Measurement of Temperature-Dependent Young’s Modulus at a Strain Rate for a Molding Compound by Nanoindentation

Measurement of Temperature-Dependent Young’s Modulus at a Strain Rate for a Molding Compound by... The mechanical properties of a molding compound on a packaged integrated circuit (IC) were measured by spherical nanoindentation using a 50 μm radius diamond tip. The molding compound is a heterogeneous material, consisting of assorted diameters of glass beads embedded in an epoxy. Statistical analysis was conducted to determine the representative volume element (RVE) size for a nanoindentation grid. Nanoindentation was made on the RVE to determine the effective viscoelastic properties. The relaxation functions were converted to temperature-dependent Young’s modulus at a given strain rate at several elevated temperatures. The Young’s modulus values at a given strain rate from nanoindentation were found to be in a good agreement with the corresponding data obtained from tensile samples at or below 90 °C. However, the values from nanoindentation were significantly lower than the data obtained from tensile samples when the temperature was near or higher than 110 °C, which is near the glass transition. The spatial distribution of the Young’s modulus at a given strain rate was determined using nanoindentation with a Berkovich tip. The spatial variation of the Young’s modulus at a given strain rate is due to the difference in nanoindentation sites (glass beads, epoxy or the interphase region). A graphical map made from an optical micrograph agrees reasonably well with the nanoindentation results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Mechanics Springer Journals

Measurement of Temperature-Dependent Young’s Modulus at a Strain Rate for a Molding Compound by Nanoindentation

Loading next page...
 
/lp/springer_journal/measurement-of-temperature-dependent-young-s-modulus-at-a-strain-rate-qLTD6jxnVM
Publisher
Springer US
Copyright
Copyright © 2016 by Society for Experimental Mechanics
Subject
Engineering; Continuum Mechanics and Mechanics of Materials; Characterization and Evaluation of Materials; Optics, Lasers, Photonics, Optical Devices; Structural Mechanics; Vibration, Dynamical Systems, Control; Classical Mechanics
ISSN
0014-4851
eISSN
1741-2765
D.O.I.
10.1007/s11340-016-0205-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial