Measurement of Non-Stationary Gas Flow Parameters Using Diode Laser Absorption Spectroscopy at High Temperatures and Pressures

Measurement of Non-Stationary Gas Flow Parameters Using Diode Laser Absorption Spectroscopy at... The layout of an absorption spectrometer with diode lasers for contactless measurement of the temperature and water-vapor concentration in gas flows with mixture pressures of up to 3 atm and temperatures of 300–2000 K has been designed. The technique is based on the rapid tuning of the radiation wavelength of two lasers, the registration of the absorption lines of water molecules that are located in the tuning range, and the fitting of the experimental absorption spectra by theoretical ones that have been simulated using spectroscopic databases. The original components of the spectrometer and different algorithms of the processing of experimental spectra are described. The performance of the spectrometer and processing methods were tested in the laboratory with a cuvette at a pressure of 1 atm and temperatures of 300–1500 K. The different processing algorithms give a reasonable coincidence of data on hot zone parameters that were obtained by the method of diode laser absorption spectrometry, and the temperature that was measured using standard sensors. The designed layout of the spectrometer passed the first tests on the T-131 experimental stand at the TsAGI (Central Aerohydrodynamics Institute). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png High Temperature Springer Journals

Measurement of Non-Stationary Gas Flow Parameters Using Diode Laser Absorption Spectroscopy at High Temperatures and Pressures

Loading next page...
 
/lp/springer_journal/measurement-of-non-stationary-gas-flow-parameters-using-diode-laser-xy7XEi0ns6
Publisher
Springer Journals
Copyright
Copyright © 2018 by Pleiades Publishing, Ltd.
Subject
Physics; Atoms and Molecules in Strong Fields, Laser Matter Interaction; Materials Science, general; Classical and Continuum Physics; Physical Chemistry; Industrial Chemistry/Chemical Engineering
ISSN
0018-151X
eISSN
1608-3156
D.O.I.
10.1134/S0018151X18010108
Publisher site
See Article on Publisher Site

Abstract

The layout of an absorption spectrometer with diode lasers for contactless measurement of the temperature and water-vapor concentration in gas flows with mixture pressures of up to 3 atm and temperatures of 300–2000 K has been designed. The technique is based on the rapid tuning of the radiation wavelength of two lasers, the registration of the absorption lines of water molecules that are located in the tuning range, and the fitting of the experimental absorption spectra by theoretical ones that have been simulated using spectroscopic databases. The original components of the spectrometer and different algorithms of the processing of experimental spectra are described. The performance of the spectrometer and processing methods were tested in the laboratory with a cuvette at a pressure of 1 atm and temperatures of 300–1500 K. The different processing algorithms give a reasonable coincidence of data on hot zone parameters that were obtained by the method of diode laser absorption spectrometry, and the temperature that was measured using standard sensors. The designed layout of the spectrometer passed the first tests on the T-131 experimental stand at the TsAGI (Central Aerohydrodynamics Institute).

Journal

High TemperatureSpringer Journals

Published: Mar 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off