Measurement of gas transfer across wind-forced wavy air–water interfaces using laser-induced fluorescence

Measurement of gas transfer across wind-forced wavy air–water interfaces using laser-induced... Optical distortions have previously prevented non-intrusive measurements of dissolved oxygen concentration profiles by Laser induced fluorescence (LIF) to within 200 μm of the air–water interface. It is shown that by careful experimental design, reliable measurements can be obtained within 28 μm of moving air–water interfaces. Consideration of previously unidentified optical distortions in LIF imagery due to non-linear effects is presented that is critical for robust LIF data processing and experimental design. Phase resolved gas flux measurements have now been accomplished along wind forced microscale waves and indicate that the highest mean gas fluxes are located in the wave troughs. The local mean oxygen fluxes as determined by LIF techniques can be reconciled to within 40% of those obtained by bulk measurement in the water. These data provide a new perspective on wind-wave enhancement of low solubility gas transfer across the air–water interface. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Measurement of gas transfer across wind-forced wavy air–water interfaces using laser-induced fluorescence

Loading next page...
 
/lp/springer_journal/measurement-of-gas-transfer-across-wind-forced-wavy-air-water-zBiJ2ARPHW
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0398-8
Publisher site
See Article on Publisher Site

Abstract

Optical distortions have previously prevented non-intrusive measurements of dissolved oxygen concentration profiles by Laser induced fluorescence (LIF) to within 200 μm of the air–water interface. It is shown that by careful experimental design, reliable measurements can be obtained within 28 μm of moving air–water interfaces. Consideration of previously unidentified optical distortions in LIF imagery due to non-linear effects is presented that is critical for robust LIF data processing and experimental design. Phase resolved gas flux measurements have now been accomplished along wind forced microscale waves and indicate that the highest mean gas fluxes are located in the wave troughs. The local mean oxygen fluxes as determined by LIF techniques can be reconciled to within 40% of those obtained by bulk measurement in the water. These data provide a new perspective on wind-wave enhancement of low solubility gas transfer across the air–water interface.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 10, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off