Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames

Measurement of axisymmetric temperature fields using reference beam and shearing interferometry... A unified methodology for the application of reference beam and shearing interferometry to measure axisymmetric temperature fields within flames is proposed. Sensitivity and accuracy of the techniques are analyzed basing on interferograms of reference temperature profiles and CARS measurements obtained in test laminar flames. The rapid decay of temperature measurements accuracy with increasing both intensity of errors sources and uncertainty on independent parameters is assessed. The spatial variation of mixture composition in diffusive combusting flows requires the application of complementary methods to obtain a satisfactory accuracy, while flow fields with lean premixed combustion can be treated as optically-homogeneous media. The temperature maps resulting from the investigation of the test laminar flames are presented and discussed. The capability to disclose the thermal structure and to provide reliable quantitative data is demonstrated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames

Loading next page...
 
/lp/springer_journal/measurement-of-axisymmetric-temperature-fields-using-reference-beam-IVlB3UbYGE
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050420
Publisher site
See Article on Publisher Site

Abstract

A unified methodology for the application of reference beam and shearing interferometry to measure axisymmetric temperature fields within flames is proposed. Sensitivity and accuracy of the techniques are analyzed basing on interferograms of reference temperature profiles and CARS measurements obtained in test laminar flames. The rapid decay of temperature measurements accuracy with increasing both intensity of errors sources and uncertainty on independent parameters is assessed. The spatial variation of mixture composition in diffusive combusting flows requires the application of complementary methods to obtain a satisfactory accuracy, while flow fields with lean premixed combustion can be treated as optically-homogeneous media. The temperature maps resulting from the investigation of the test laminar flames are presented and discussed. The capability to disclose the thermal structure and to provide reliable quantitative data is demonstrated.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 5, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off