Measurement-device-independent quantum key distribution with q-plate

Measurement-device-independent quantum key distribution with q-plate The original measurement-device-independent quantum key distribution is reviewed and a modified protocol using rotation invariant photonic state is proposed. A hybrid encoding approach combined polarization qubit with orbit angular momentum qubit is adopted to overcome the polarization misalignment associated with random rotations in long-distance quantum key distribution. The initial encoding and final decoding of information in our MDI-QKD implementation protocol can be conveniently performed in the polarization space, while the transmission is done in the rotation invariant hybrid space. Our analysis indicates that both the secure key rate and transmission distance can be improved with our modified protocol owing to the lower quantum bit error rate. Furthermore, our hybrid encoding approach only needs to insert four q-plates in practical experiment and to overcome the polarization misalignment problem mentioned above without including any feedback control. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Measurement-device-independent quantum key distribution with q-plate

Loading next page...
 
/lp/springer_journal/measurement-device-independent-quantum-key-distribution-with-q-plate-WweweRT79C
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-1147-1
Publisher site
See Article on Publisher Site

Abstract

The original measurement-device-independent quantum key distribution is reviewed and a modified protocol using rotation invariant photonic state is proposed. A hybrid encoding approach combined polarization qubit with orbit angular momentum qubit is adopted to overcome the polarization misalignment associated with random rotations in long-distance quantum key distribution. The initial encoding and final decoding of information in our MDI-QKD implementation protocol can be conveniently performed in the polarization space, while the transmission is done in the rotation invariant hybrid space. Our analysis indicates that both the secure key rate and transmission distance can be improved with our modified protocol owing to the lower quantum bit error rate. Furthermore, our hybrid encoding approach only needs to insert four q-plates in practical experiment and to overcome the polarization misalignment problem mentioned above without including any feedback control.

Journal

Quantum Information ProcessingSpringer Journals

Published: Oct 19, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off