Mean-Variance Problems for Finite Horizon Semi-Markov Decision Processes

Mean-Variance Problems for Finite Horizon Semi-Markov Decision Processes This paper deals with a mean-variance problem for finite horizon semi-Markov decision processes. The state and action spaces are Borel spaces, while the reward function may be unbounded. The goal is to seek an optimal policy with minimal finite horizon reward variance over the set of policies with a given mean. Using the theory of $$N$$ N -step contraction, we give a characterization of policies with a given mean and convert the second order moment of the finite horizon reward to a mean of an infinite horizon reward/cost generated by a discrete-time Markov decision processes (MDP) with a two dimension state space and a new one-step reward/cost under suitable conditions. We then establish the optimality equation and the existence of mean-variance optimal policies by employing the existing results of discrete-time MDPs. We also provide a value iteration and a policy improvement algorithms for computing the value function and mean-variance optimal policies, respectively. In addition, a linear program and the dual program are developed for solving the mean-variance problem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Mean-Variance Problems for Finite Horizon Semi-Markov Decision Processes

Loading next page...
 
/lp/springer_journal/mean-variance-problems-for-finite-horizon-semi-markov-decision-h6Hu5Uc4YD
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-014-9278-9
Publisher site
See Article on Publisher Site

Abstract

This paper deals with a mean-variance problem for finite horizon semi-Markov decision processes. The state and action spaces are Borel spaces, while the reward function may be unbounded. The goal is to seek an optimal policy with minimal finite horizon reward variance over the set of policies with a given mean. Using the theory of $$N$$ N -step contraction, we give a characterization of policies with a given mean and convert the second order moment of the finite horizon reward to a mean of an infinite horizon reward/cost generated by a discrete-time Markov decision processes (MDP) with a two dimension state space and a new one-step reward/cost under suitable conditions. We then establish the optimality equation and the existence of mean-variance optimal policies by employing the existing results of discrete-time MDPs. We also provide a value iteration and a policy improvement algorithms for computing the value function and mean-variance optimal policies, respectively. In addition, a linear program and the dual program are developed for solving the mean-variance problem.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Oct 1, 2015

References

  • Finite-horizon variance penalised Markov decision processes
    Collins, EJ

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off