Mean-Shift segmentation and PDE-based nonlinear diffusion: toward a common variational framework for foreground/background document image segmentation

Mean-Shift segmentation and PDE-based nonlinear diffusion: toward a common variational framework... The presence of noise in images of degraded documents limits the direct application of segmentation approaches and can lead to the presence of a number of different artifacts in the final segmented image. A possible solution is the integration of a pre-filtering step which may improve the segmentation quality through the reduction of such noise. This study demonstrated that combining the Mean-Shift clustering algorithm and the tensor-driven diffusion process into a joint iterative framework produced promising results. For instance, this framework generates segmented images with reduced edge and background artifacts when compared to results obtained after applying each method separately. This improvement is explained by the mutual interaction of global and local information, introduced, respectively, by the Mean-Shift and the anisotropic diffusion. Another point of note is that the anisotropic diffusion process smoothed images while preserving edge continuities. The convergence of this framework was defined automatically under a stopping criterion not previously defined when the diffusion process was applied alone. To obtain a fast convergence, the common framework utilizes the speedup algorithm of the Fukunaga and Hostetler Mean-Shift formulation already proposed by Lebourgeois et al. (International Conference on Document Analysis and Recognition (ICDAR), pp 52–56, 2013). This new variant of the Mean-Shift algorithm produced similar results to the original one, but ran faster due to the application of the integral volume. The first application of this framework was document ink bleed-through removal where noise is stemmed from the interference of the verso side on the recto side, thus perturbing the legibility of the original text. Other categories of images could also be subjected to the proposed framework application. International Journal of Document Analysis and Recognition (IJDAR) Springer Journals

Mean-Shift segmentation and PDE-based nonlinear diffusion: toward a common variational framework for foreground/background document image segmentation

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Computer Science; Image Processing and Computer Vision; Pattern Recognition
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial