Mean-Shift segmentation and PDE-based nonlinear diffusion: toward a common variational framework for foreground/background document image segmentation

Mean-Shift segmentation and PDE-based nonlinear diffusion: toward a common variational framework... The presence of noise in images of degraded documents limits the direct application of segmentation approaches and can lead to the presence of a number of different artifacts in the final segmented image. A possible solution is the integration of a pre-filtering step which may improve the segmentation quality through the reduction of such noise. This study demonstrated that combining the Mean-Shift clustering algorithm and the tensor-driven diffusion process into a joint iterative framework produced promising results. For instance, this framework generates segmented images with reduced edge and background artifacts when compared to results obtained after applying each method separately. This improvement is explained by the mutual interaction of global and local information, introduced, respectively, by the Mean-Shift and the anisotropic diffusion. Another point of note is that the anisotropic diffusion process smoothed images while preserving edge continuities. The convergence of this framework was defined automatically under a stopping criterion not previously defined when the diffusion process was applied alone. To obtain a fast convergence, the common framework utilizes the speedup algorithm of the Fukunaga and Hostetler Mean-Shift formulation already proposed by Lebourgeois et al. (International Conference on Document Analysis and Recognition (ICDAR), pp 52–56, 2013). This new variant of the Mean-Shift algorithm produced similar results to the original one, but ran faster due to the application of the integral volume. The first application of this framework was document ink bleed-through removal where noise is stemmed from the interference of the verso side on the recto side, thus perturbing the legibility of the original text. Other categories of images could also be subjected to the proposed framework application. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Document Analysis and Recognition (IJDAR) Springer Journals

Mean-Shift segmentation and PDE-based nonlinear diffusion: toward a common variational framework for foreground/background document image segmentation

Loading next page...
 
/lp/springer_journal/mean-shift-segmentation-and-pde-based-nonlinear-diffusion-toward-a-KoJYZPGpGP
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Image Processing and Computer Vision; Pattern Recognition
ISSN
1433-2833
eISSN
1433-2825
D.O.I.
10.1007/s10032-017-0285-7
Publisher site
See Article on Publisher Site

Abstract

The presence of noise in images of degraded documents limits the direct application of segmentation approaches and can lead to the presence of a number of different artifacts in the final segmented image. A possible solution is the integration of a pre-filtering step which may improve the segmentation quality through the reduction of such noise. This study demonstrated that combining the Mean-Shift clustering algorithm and the tensor-driven diffusion process into a joint iterative framework produced promising results. For instance, this framework generates segmented images with reduced edge and background artifacts when compared to results obtained after applying each method separately. This improvement is explained by the mutual interaction of global and local information, introduced, respectively, by the Mean-Shift and the anisotropic diffusion. Another point of note is that the anisotropic diffusion process smoothed images while preserving edge continuities. The convergence of this framework was defined automatically under a stopping criterion not previously defined when the diffusion process was applied alone. To obtain a fast convergence, the common framework utilizes the speedup algorithm of the Fukunaga and Hostetler Mean-Shift formulation already proposed by Lebourgeois et al. (International Conference on Document Analysis and Recognition (ICDAR), pp 52–56, 2013). This new variant of the Mean-Shift algorithm produced similar results to the original one, but ran faster due to the application of the integral volume. The first application of this framework was document ink bleed-through removal where noise is stemmed from the interference of the verso side on the recto side, thus perturbing the legibility of the original text. Other categories of images could also be subjected to the proposed framework application.

Journal

International Journal of Document Analysis and Recognition (IJDAR)Springer Journals

Published: May 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off