Mean and CV reduction methods on Gaussian type-2 fuzzy set and its application to a multilevel profit transportation problem in a two-stage supply chain network

Mean and CV reduction methods on Gaussian type-2 fuzzy set and its application to a multilevel... The transportation problem (TP) is an important supply chain optimization problem in the traffic engineering. This paper maximizes the total profit over a three-tiered distribution system consisting of plants, distribution centers (DCs) and customers. Plants produce multiple products that are shipped to DCs. If a DC is used, then a fixed cost (FC) is charged. The customers are supplied by a single DC. To characterize the uncertainty in the practical decision environment, this paper considers the unit cost of TP, FC, the supply capacities and demands as Gaussian type-2 fuzzy variables. To give a modeling framework for optimization problems with multifold uncertainty, different reduction methods were proposed to transform a Gaussian type-2 fuzzy variable into a type-1 fuzzy variable by mean reduction method and CV reduction method. Then, the TP was reformulated as a chance-constrained programming model enlightened by the credibility optimization methods. The deterministic models are then solved using two different soft computing techniques—generalized reduced gradient and modified particle swarm optimization, where the position of each particle is adjusted according to its own experience and that of its neighbors. The numerical experiments illustrated the application and effectiveness of the proposed approaches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neural Computing and Applications Springer Journals

Mean and CV reduction methods on Gaussian type-2 fuzzy set and its application to a multilevel profit transportation problem in a two-stage supply chain network

Loading next page...
 
/lp/springer_journal/mean-and-cv-reduction-methods-on-gaussian-type-2-fuzzy-set-and-its-HxXwsNnO29
Publisher
Springer London
Copyright
Copyright © 2016 by The Natural Computing Applications Forum
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Data Mining and Knowledge Discovery; Probability and Statistics in Computer Science; Computational Science and Engineering; Image Processing and Computer Vision; Computational Biology/Bioinformatics
ISSN
0941-0643
eISSN
1433-3058
D.O.I.
10.1007/s00521-016-2202-2
Publisher site
See Article on Publisher Site

Abstract

The transportation problem (TP) is an important supply chain optimization problem in the traffic engineering. This paper maximizes the total profit over a three-tiered distribution system consisting of plants, distribution centers (DCs) and customers. Plants produce multiple products that are shipped to DCs. If a DC is used, then a fixed cost (FC) is charged. The customers are supplied by a single DC. To characterize the uncertainty in the practical decision environment, this paper considers the unit cost of TP, FC, the supply capacities and demands as Gaussian type-2 fuzzy variables. To give a modeling framework for optimization problems with multifold uncertainty, different reduction methods were proposed to transform a Gaussian type-2 fuzzy variable into a type-1 fuzzy variable by mean reduction method and CV reduction method. Then, the TP was reformulated as a chance-constrained programming model enlightened by the credibility optimization methods. The deterministic models are then solved using two different soft computing techniques—generalized reduced gradient and modified particle swarm optimization, where the position of each particle is adjusted according to its own experience and that of its neighbors. The numerical experiments illustrated the application and effectiveness of the proposed approaches.

Journal

Neural Computing and ApplicationsSpringer Journals

Published: Feb 4, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off