Mea2/Golga3 gene is disrupted in a line of transgenic mice with a reciprocal translocation between Chromosomes 5 and 19 and is responsible for a defective spermatogenesis in homozygotes

Mea2/Golga3 gene is disrupted in a line of transgenic mice with a reciprocal translocation... A line of transgenic mouse T604 transmitted a transgene to progeny together with a set of chromosomes with a reciprocal translocation. The transgene was integrated at a single site in the translocated chromosomes, as revealed by fluorescence in situ hybridization. The transgenic hemizygous males, also heterozygous for the translocation of chromosomes, showed apparently normal spermatogenesis, while the males homozygous for the transgene as well as for the translocated chromosomes showed a defect in spermatogenesis. Considering that the genetic rearrangement by either insertion of the transgene or the chromosome translocation in the T604 mouse line might have caused a recessive mutation in a gene indispensable for spermatogenesis, we have mapped the transgene integration site and the translocation breakpoints in mouse chromosomes. Linkage analysis with SSLP markers showed that the loci for the transgene and the translocation breakpoints were closely located to D5Mit24 on Chromosome (Chr) 5, and to a region between D19Mit19 and D19Jpk2 on Chr 19. Mea2 gene, mapped only 2 cM from D5Mit24 and known to show male-specific enhanced expression in the testis, was analyzed as a candidate for the gene disrupted in T604 transgenic mice. Southern blot analysis revealed that Mea2 gene was indeed disrupted in T604 mice, and Northern blot analysis of the testis RNA showed that the expression of Mea2 was annihilated in the testis of T604 transgenic homozygotes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Mea2/Golga3 gene is disrupted in a line of transgenic mice with a reciprocal translocation between Chromosomes 5 and 19 and is responsible for a defective spermatogenesis in homozygotes

Loading next page...
 
/lp/springer_journal/mea2-golga3-gene-is-disrupted-in-a-line-of-transgenic-mice-with-a-BwIwfeGMfj
Publisher
Springer Journals
Copyright
Copyright © 1999 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003359900932
Publisher site
See Article on Publisher Site

Abstract

A line of transgenic mouse T604 transmitted a transgene to progeny together with a set of chromosomes with a reciprocal translocation. The transgene was integrated at a single site in the translocated chromosomes, as revealed by fluorescence in situ hybridization. The transgenic hemizygous males, also heterozygous for the translocation of chromosomes, showed apparently normal spermatogenesis, while the males homozygous for the transgene as well as for the translocated chromosomes showed a defect in spermatogenesis. Considering that the genetic rearrangement by either insertion of the transgene or the chromosome translocation in the T604 mouse line might have caused a recessive mutation in a gene indispensable for spermatogenesis, we have mapped the transgene integration site and the translocation breakpoints in mouse chromosomes. Linkage analysis with SSLP markers showed that the loci for the transgene and the translocation breakpoints were closely located to D5Mit24 on Chromosome (Chr) 5, and to a region between D19Mit19 and D19Jpk2 on Chr 19. Mea2 gene, mapped only 2 cM from D5Mit24 and known to show male-specific enhanced expression in the testis, was analyzed as a candidate for the gene disrupted in T604 transgenic mice. Southern blot analysis revealed that Mea2 gene was indeed disrupted in T604 mice, and Northern blot analysis of the testis RNA showed that the expression of Mea2 was annihilated in the testis of T604 transgenic homozygotes.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off