Maximum error-bounded Piecewise Linear Representation for online stream approximation

Maximum error-bounded Piecewise Linear Representation for online stream approximation Given a time series data stream, the generation of error-bounded Piecewise Linear Representation (error-bounded PLR) is to construct a number of consecutive line segments to approximate the stream, such that the approximation error does not exceed a prescribed error bound. In this work, we consider the error bound in $$L_\infty $$ L ∞ norm as approximation criterion, which constrains the approximation error on each corresponding data point, and aim on designing algorithms to generate the minimal number of segments. In the literature, the optimal approximation algorithms are effectively designed based on transformed space other than time-value space, while desirable optimal solutions based on original time domain (i.e., time-value space) are still lacked. In this article, we proposed two linear-time algorithms to construct error-bounded PLR for data stream based on time domain, which are named OptimalPLR and GreedyPLR, respectively. The OptimalPLR is an optimal algorithm that generates minimal number of line segments for the stream approximation, and the GreedyPLR is an alternative solution for the requirements of high efficiency and resource-constrained environment. In order to evaluate the superiority of OptimalPLR, we theoretically analyzed and compared OptimalPLR with the state-of-art optimal solution in transformed space, which also achieves linear complexity. We successfully proved the theoretical equivalence between time-value space and such transformed space, and also discovered the superiority of OptimalPLR on processing efficiency in practice. The extensive results of empirical evaluation support and demonstrate the effectiveness and efficiency of our proposed algorithms. The VLDB Journal Springer Journals

Maximum error-bounded Piecewise Linear Representation for online stream approximation

Loading next page...
Springer Berlin Heidelberg
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial