Matrix Effect Evaluation and Method Validation of Azoxystrobin and Difenoconazole Residues in Red Flesh Dragon Fruit (Hylocereus polyrhizus) Matrices Using QuEChERS Sample Preparation Methods Followed by LC–MS/MS Determination

Matrix Effect Evaluation and Method Validation of Azoxystrobin and Difenoconazole Residues in Red... Production of red flesh dragon fruit (Hylocereus polyrhizus) was hampered by Colletotrichum sp. Pre-harvest application of azoxystrobin and difenoconazole mixture is recommended, therefore, a selective and sensitive multi residues analytical method is required in monitoring and evaluating the commodity’s safety. LC–MS/MS is a well-established analytical technique for qualitative and quantitative determination in complex matrices. However, this method is hurdled by co-eluted coextractives interferences. This work evaluated the pH effect of acetate buffered and citrate buffered QuEChERS sample preparation in their effectiveness of matrix effect reduction. Citrate buffered QuEChERS proved to produce clean final extract with relative matrix effect 0.4%–0.7%. Method validation of the selected sample preparation followed by LC–MS/MS for whole dragon fruit, flesh and peel matrices fortified at 0.005, 0.01, 0.1 and 1 g/g showed recoveries 75%–119%, intermediate repeatability 2%–14%. The expanded uncertainties were 7%–48%. Based on the international acceptance criteria, this method is valid. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of Environmental Contamination and Toxicology Springer Journals

Matrix Effect Evaluation and Method Validation of Azoxystrobin and Difenoconazole Residues in Red Flesh Dragon Fruit (Hylocereus polyrhizus) Matrices Using QuEChERS Sample Preparation Methods Followed by LC–MS/MS Determination

Loading next page...
 
/lp/springer_journal/matrix-effect-evaluation-and-method-validation-of-azoxystrobin-and-6YgbIYyH3h
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Environment; Pollution, general; Environmental Health; Ecotoxicology; Soil Science & Conservation; Environmental Chemistry; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0007-4861
eISSN
1432-0800
D.O.I.
10.1007/s00128-018-2317-5
Publisher site
See Article on Publisher Site

Abstract

Production of red flesh dragon fruit (Hylocereus polyrhizus) was hampered by Colletotrichum sp. Pre-harvest application of azoxystrobin and difenoconazole mixture is recommended, therefore, a selective and sensitive multi residues analytical method is required in monitoring and evaluating the commodity’s safety. LC–MS/MS is a well-established analytical technique for qualitative and quantitative determination in complex matrices. However, this method is hurdled by co-eluted coextractives interferences. This work evaluated the pH effect of acetate buffered and citrate buffered QuEChERS sample preparation in their effectiveness of matrix effect reduction. Citrate buffered QuEChERS proved to produce clean final extract with relative matrix effect 0.4%–0.7%. Method validation of the selected sample preparation followed by LC–MS/MS for whole dragon fruit, flesh and peel matrices fortified at 0.005, 0.01, 0.1 and 1 g/g showed recoveries 75%–119%, intermediate repeatability 2%–14%. The expanded uncertainties were 7%–48%. Based on the international acceptance criteria, this method is valid.

Journal

Bulletin of Environmental Contamination and ToxicologySpringer Journals

Published: Mar 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off