Mathematical models in genetics

Mathematical models in genetics In this study, we present some of the basic ideas of population genetics. The founders of population genetics are R.A. Fisher, S. Wright, and J. B.S. Haldane. They, not only developed almost all the basic theory associated with genetics, but they also initiated multiple experiments in support of their theories. One of the first significant insights, which are a result of the Hardy–Weinberg law, is Mendelian inheritance preserves genetic variation on which the natural selection acts. We will limit to simple models formulated in terms of differential equations. Some of those differential equations are nonlinear and thus emphasize issues such as the stability of the fixed points and time scales on which those equations operate. First, we consider the classic case when selection acts on diploid locus at which wу can get arbitrary number of alleles. Then, we consider summaries that include recombination and selection at multiple loci. Also, we discuss the evolution of quantitative traits. In this case, the theory is formulated in respect of directly measurable quantities. Special cases of this theory have been successfully used for many decades in plants and animals breeding. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Mathematical models in genetics

Loading next page...
 
/lp/springer_journal/mathematical-models-in-genetics-wsgNbQQS2d
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795416080135
Publisher site
See Article on Publisher Site

Abstract

In this study, we present some of the basic ideas of population genetics. The founders of population genetics are R.A. Fisher, S. Wright, and J. B.S. Haldane. They, not only developed almost all the basic theory associated with genetics, but they also initiated multiple experiments in support of their theories. One of the first significant insights, which are a result of the Hardy–Weinberg law, is Mendelian inheritance preserves genetic variation on which the natural selection acts. We will limit to simple models formulated in terms of differential equations. Some of those differential equations are nonlinear and thus emphasize issues such as the stability of the fixed points and time scales on which those equations operate. First, we consider the classic case when selection acts on diploid locus at which wу can get arbitrary number of alleles. Then, we consider summaries that include recombination and selection at multiple loci. Also, we discuss the evolution of quantitative traits. In this case, the theory is formulated in respect of directly measurable quantities. Special cases of this theory have been successfully used for many decades in plants and animals breeding.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Sep 28, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off