# Mathematical Models Describing Chinese Hamster Ovary Cell Death Due to Electroporation In Vitro

Mathematical Models Describing Chinese Hamster Ovary Cell Death Due to Electroporation In Vitro Electroporation is a phenomenon used in the treatment of tumors by electrochemotherapy, non-thermal ablation with irreversible electroporation, and gene therapy. When treating patients, either predefined or variable electrode geometry is used. Optimal pulse parameters are predetermined for predefined electrode geometry, while they must be calculated for each specific case for variable electrode geometry. The position and number of electrodes are also determined for each patient. It is currently assumed that above a certain experimentally determined value of electric field, all cells are permeabilized/destroyed and under it they are unaffected. In this paper, mathematical models of survival in which the probability of cell death is continuously distributed from 0 to 100 % are proposed and evaluated. Experiments were performed on cell suspensions using electrical parameters similar to standard electrochemotherapy and irreversible electroporation parameters. The proportion of surviving cells was determined using clonogenic assay for assessing the ability of a cell to grow into a colony. Various mathematical models (first-order kinetics, Hülsheger, Peleg-Fermi, Weibull, logistic, adapted Gompertz, Geeraerd) were fitted to experimental data using a non-linear least-squares method. The fit was evaluated by calculating goodness of fit and by observing the trend of values of models’ parameters. The most appropriate models of cell survival as a function of treatment time were the adapted Gompertz and the Geeraerd models and, as a function of the electric field, the logistic, adapted Gompertz and Peleg-Fermi models. The next steps to be performed are validation of the most appropriate models on tissues and determination of the models’ predictive power. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

# Mathematical Models Describing Chinese Hamster Ovary Cell Death Due to Electroporation In Vitro

, Volume 248 (5) – Jul 30, 2015
17 pages

/lp/springer_journal/mathematical-models-describing-chinese-hamster-ovary-cell-death-due-to-1gZh4fASib
Publisher
Springer US
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-015-9825-6
Publisher site
See Article on Publisher Site

### Abstract

Electroporation is a phenomenon used in the treatment of tumors by electrochemotherapy, non-thermal ablation with irreversible electroporation, and gene therapy. When treating patients, either predefined or variable electrode geometry is used. Optimal pulse parameters are predetermined for predefined electrode geometry, while they must be calculated for each specific case for variable electrode geometry. The position and number of electrodes are also determined for each patient. It is currently assumed that above a certain experimentally determined value of electric field, all cells are permeabilized/destroyed and under it they are unaffected. In this paper, mathematical models of survival in which the probability of cell death is continuously distributed from 0 to 100 % are proposed and evaluated. Experiments were performed on cell suspensions using electrical parameters similar to standard electrochemotherapy and irreversible electroporation parameters. The proportion of surviving cells was determined using clonogenic assay for assessing the ability of a cell to grow into a colony. Various mathematical models (first-order kinetics, Hülsheger, Peleg-Fermi, Weibull, logistic, adapted Gompertz, Geeraerd) were fitted to experimental data using a non-linear least-squares method. The fit was evaluated by calculating goodness of fit and by observing the trend of values of models’ parameters. The most appropriate models of cell survival as a function of treatment time were the adapted Gompertz and the Geeraerd models and, as a function of the electric field, the logistic, adapted Gompertz and Peleg-Fermi models. The next steps to be performed are validation of the most appropriate models on tissues and determination of the models’ predictive power.

### Journal

The Journal of Membrane BiologySpringer Journals

Published: Jul 30, 2015

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations