Maternal investment and nutrient utilization during early larval development of the sea cucumber Australostichopus mollis

Maternal investment and nutrient utilization during early larval development of the sea cucumber... Echinoderms are widely used to investigate the relationship between egg size, energy content and larval developmental strategies in marine invertebrates; although there have been few studies on ophiuroids and holothuroids. In this paper, we provide the first detailed biochemical information on egg composition and utilization in the planktotrophic holothuroid, Australostichopus mollis. The egg ultrastructure, protein content (85.1 ng egg−1) and lipid:protein ratio of 0.42 were consistent with those of other planktotrophic echinoderms of similar egg size. However, the lipid content (35.6 ng egg−1) was outside the 95% prediction band for the relationship between egg size and lipid content for echinoderms. Triacylglycerol (TAG) was the main energetic lipid present in the egg, with ca 50% of the TAG being utilized to construct the feeding auricularia; the remaining TAG was estimated to be consumed over 114.8 h (4.8 days) of development. Feeding a microalgal diet during early larval development did not affect the rate of TAG utilization, but increased protein content in the 90-h auricularia. Biochemical information from A. mollis eggs/larvae suggests that TAG might be the ancestral maternally derived energetic lipid in the Echinodermata, but also that there may be different patterns of lipid utilization between different classes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Marine Biology Springer Journals

Maternal investment and nutrient utilization during early larval development of the sea cucumber Australostichopus mollis

Loading next page...
 
/lp/springer_journal/maternal-investment-and-nutrient-utilization-during-early-larval-yUYDKDCA0s
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Environment; Marine & Freshwater Sciences; Freshwater & Marine Ecology; Oceanography; Microbiology; Zoology
ISSN
0025-3162
eISSN
1432-1793
D.O.I.
10.1007/s00227-017-3209-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial