Material properties of CMT—metal additive manufactured duplex stainless steel blade-like geometries

Material properties of CMT—metal additive manufactured duplex stainless steel blade-like... Impeller blades are often individual and complex-shaped components made of challenging metals. As the manufacturing of such blades is highly sophisticated, only a few companies worldwide possess the necessary processing knowledge and that is why long production times have to be accepted by customers. To overcome this economic disadvantage, manufacturing technologies are permanent under supervision and it seems that metal additive manufacturing could thereby play an important role in future. In this paper, wire arc additive manufacturing (WAAM) based on gas metal arc welding (GMAW) is considered. Shape-giving GMAW is well known in industrial manufacturing, but its application is limited due to restrictions by the welding process itself: For thinner wall thicknesses, a significant reduction of the weld process energy is required which increases the risk of process instabilities and spatter formation. Extensive welding process-related efforts have been undertaken to overcome this fact and a new GMAW process, called CMT (Cold Metal Transfer) was introduced. CMT is based on a high-frequency forward and backward movement of the welding wire electrode and provides an almost spatter-free and absolute precise, periodic detachment of accurately defined droplets from the filler wire at very low process energies. In combination with an accurate robotic movement of the CMT welding torch, geometries with minimum thicknesses in the range of 2–4 mm can be build up layer by layer. Additionally, a broad range of different, well established and third party-approved GMAW filler metals for joining is available. In this work, an impeller blade-like geometry out of duplex stainless steel has been manufactured by CMT using a filler wire type G 22 9 3 N L. The investigations have shown that the achieved surface roughness is comparable to sand casting and the microstructure is without any evidence for porosity and lack of fusion. Furthermore, an austenite/δ-ferrite weld microstructure with partly preferred grain orientations and a δ-ferrite content of around 30FN exists. The measured mechanical properties, especially strength and toughness, are comparable to data provided by the filler metal data sheet. Welding in the World Springer Journals

Material properties of CMT—metal additive manufactured duplex stainless steel blade-like geometries

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by International Institute of Welding
Materials Science; Metallic Materials; Continuum Mechanics and Mechanics of Materials; Theoretical and Applied Mechanics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial