Mass flow-rate control unit to calibrate hot-wire sensors

Mass flow-rate control unit to calibrate hot-wire sensors Hot-wire anemometry is a measuring technique that is widely employed in fluid mechanics research to study the velocity fields of gas flows. It is general practice to calibrate hot-wire sensors against velocity. Calibrations are usually carried out under atmospheric pressure conditions and these suggest that the wire is sensitive to the instantaneous local volume flow rate. It is pointed out, however, that hot wires are sensitive to the instantaneous local mass flow rate and, of course, also to the gas heat conductivity. To calibrate hot wires with respect to mass flow rates per unit area, i.e., with respect to (ρU), requires special calibration test rigs. Such a device is described and its application is summarized within the (ρU) range 0.1–25 kg/m2 s. Calibrations are shown to yield the same hot-wire response curves for density variations in the range 1–7 kg/m3. The application of the calibrated wires to measure pulsating mass flows is demonstrated, and suggestions are made for carrying out extensive calibrations to yield the (ρU) wire response as a basis for advanced fluid mechanics research on (ρU) data in density-varying flows. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Mass flow-rate control unit to calibrate hot-wire sensors

Loading next page...
 
/lp/springer_journal/mass-flow-rate-control-unit-to-calibrate-hot-wire-sensors-FiSJyNC4rH
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0390-3
Publisher site
See Article on Publisher Site

Abstract

Hot-wire anemometry is a measuring technique that is widely employed in fluid mechanics research to study the velocity fields of gas flows. It is general practice to calibrate hot-wire sensors against velocity. Calibrations are usually carried out under atmospheric pressure conditions and these suggest that the wire is sensitive to the instantaneous local volume flow rate. It is pointed out, however, that hot wires are sensitive to the instantaneous local mass flow rate and, of course, also to the gas heat conductivity. To calibrate hot wires with respect to mass flow rates per unit area, i.e., with respect to (ρU), requires special calibration test rigs. Such a device is described and its application is summarized within the (ρU) range 0.1–25 kg/m2 s. Calibrations are shown to yield the same hot-wire response curves for density variations in the range 1–7 kg/m3. The application of the calibrated wires to measure pulsating mass flows is demonstrated, and suggestions are made for carrying out extensive calibrations to yield the (ρU) wire response as a basis for advanced fluid mechanics research on (ρU) data in density-varying flows.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 23, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off