Market sentiment dispersion and its effects on stock return and volatility

Market sentiment dispersion and its effects on stock return and volatility Behavioral economics has revealed that investor sentiment can profoundly affect individual behavior and decision-making. Recently, the question is no longer whether investor sentiment affects stock market valuation, but how to directly measure investor sentiment and quantify its effects. Before the era of big data, research uses proxies as a mediator to indirectly measure investor sentiment, which has proved elusive due to insufficient data points. In addition, most of extant sentiment analysis studies focus on institutional investors instead of individual investors. This is despite the fact that United States individual investors have been holding around 50% of the stock market in direct stock investments. In order to overcome difficulties in measuring sentiment and endorse the importance of individual investors, we examine the role of individual sentiment dispersion in stock market. In particular, we investigate whether sentiment dispersion contains information about future stock returns and realized volatility. Leveraging on development of big data and recent advances in data and text mining techniques, we capture 1,170,414 data points from Twitter and used a text mining method to extract sentiment and applied both linear regression and Support Vector Regression; found that individual sentiment dispersion contains information about stock realized volatility, and can be used to increase the prediction accuracy. We expect our results contribute to extant theories of electronic market financial behavior by directly measuring the individual sentiment dispersion; raising a new perspective to assess the impact of investor opinion on stock market; and recommending a supplementary investing approach using user-generated content. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Electronic Markets Springer Journals

Market sentiment dispersion and its effects on stock return and volatility

Loading next page...
 
/lp/springer_journal/market-sentiment-dispersion-and-its-effects-on-stock-return-and-Zzzjvtf8gA
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Institute of Applied Informatics at University of Leipzig
Subject
Business and Management; IT in Business; e-Commerce/e-business
ISSN
1019-6781
eISSN
1422-8890
D.O.I.
10.1007/s12525-017-0254-5
Publisher site
See Article on Publisher Site

Abstract

Behavioral economics has revealed that investor sentiment can profoundly affect individual behavior and decision-making. Recently, the question is no longer whether investor sentiment affects stock market valuation, but how to directly measure investor sentiment and quantify its effects. Before the era of big data, research uses proxies as a mediator to indirectly measure investor sentiment, which has proved elusive due to insufficient data points. In addition, most of extant sentiment analysis studies focus on institutional investors instead of individual investors. This is despite the fact that United States individual investors have been holding around 50% of the stock market in direct stock investments. In order to overcome difficulties in measuring sentiment and endorse the importance of individual investors, we examine the role of individual sentiment dispersion in stock market. In particular, we investigate whether sentiment dispersion contains information about future stock returns and realized volatility. Leveraging on development of big data and recent advances in data and text mining techniques, we capture 1,170,414 data points from Twitter and used a text mining method to extract sentiment and applied both linear regression and Support Vector Regression; found that individual sentiment dispersion contains information about stock realized volatility, and can be used to increase the prediction accuracy. We expect our results contribute to extant theories of electronic market financial behavior by directly measuring the individual sentiment dispersion; raising a new perspective to assess the impact of investor opinion on stock market; and recommending a supplementary investing approach using user-generated content.

Journal

Electronic MarketsSpringer Journals

Published: Apr 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off