Access the full text.
Sign up today, get DeepDyve free for 14 days.
Automatic real-time summarization of massive document streams on the Web has become an important tool for quickly transforming theoverwhelming documents into a novel, comprehensive and concise overview of an event for users. Significant progresses have been made in static text summarization. However, most previous work does not consider the temporal features of the document streams which are valuable in real-time event summarization. In this paper, we propose a novel M ultitask learning A lgorithm for Web-scale R eal-time E vent S ummarization (MARES), which leverages the benefits of supervised deep neural networks as well as a reinforcement learning algorithm to strengthen the representation learning of documents. Specifically, MARES consists two key components: (i) A relevance prediction classifier, in which a hierarchical LSTM model is used to learn the representations of queries and documents; (ii) A document filtering model learns to maximize the long-term rewards with reinforcement learning algorithm, working on a shared document encoding layer with the relevance prediction component. To verify the effectiveness of the proposed model, extensive experiments are conducted on two real-life document stream datasets: TREC Real-Time Summarization Track data and TREC Temporal Summarization Track data. The experimental results demonstrate that our model can achieve significantly better results than the state-of-the-art baseline methods.
World Wide Web – Springer Journals
Published: Jun 2, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.