Mapping wheat nitrogen uptake from RapidEye vegetation indices

Mapping wheat nitrogen uptake from RapidEye vegetation indices Mapping wheat nitrogen (N) uptake at 5 m spatial resolution could provide growers with new insights regarding nitrogen-use efficiency at the field scale. This study explored the use of spectral information from high resolution (5 × 5 m) RapidEye satellite data at peak leaf area index (LAI) to estimate end-of-season cumulative N uptake of wheat (Triticum spp.) in a heterogeneous, rainfed system. The primary objectives were to evaluate the usefulness of simple, widely used vegetation indices (VIs) from RapidEye as a tool to map crop N uptake over three growing seasons, farms and growing conditions, and to examine the usefulness of remotely sensed N uptake maps for precision agriculture applications. Data on harvested wheat N was collected at twelve plots over three seasons at four farms in the Palouse region of Northern Idaho and Eastern Washington. Seventeen commonly used spectral VIs were computed for images collected during ‘peak greenness’ (maximum LAI) to determine which VIs would be most appropriate for estimating wheat N uptake at harvest. The normalized difference red-edge index was the top performing VI, explaining 81 % of the variance in wheat N uptake with a regression slope of 1.06 and RMSE of 15.94 kg/ha. Model performance was strong across all farms over all three seasons regardless of crop variety, allowing the creation of high accuracy wheat N uptake maps. In conclusion, for this particular agro-ecosystem, mid-season VIs that incorporate the use of the NIR and red-edge bands are generally better predictors of end-of-season crop N uptake than VIs that do not include these bands, thereby further enabling their use in precision agriculture applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Mapping wheat nitrogen uptake from RapidEye vegetation indices

Loading next page...
 
/lp/springer_journal/mapping-wheat-nitrogen-uptake-from-rapideye-vegetation-indices-w718yVvV0f
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-016-9463-8
Publisher site
See Article on Publisher Site

Abstract

Mapping wheat nitrogen (N) uptake at 5 m spatial resolution could provide growers with new insights regarding nitrogen-use efficiency at the field scale. This study explored the use of spectral information from high resolution (5 × 5 m) RapidEye satellite data at peak leaf area index (LAI) to estimate end-of-season cumulative N uptake of wheat (Triticum spp.) in a heterogeneous, rainfed system. The primary objectives were to evaluate the usefulness of simple, widely used vegetation indices (VIs) from RapidEye as a tool to map crop N uptake over three growing seasons, farms and growing conditions, and to examine the usefulness of remotely sensed N uptake maps for precision agriculture applications. Data on harvested wheat N was collected at twelve plots over three seasons at four farms in the Palouse region of Northern Idaho and Eastern Washington. Seventeen commonly used spectral VIs were computed for images collected during ‘peak greenness’ (maximum LAI) to determine which VIs would be most appropriate for estimating wheat N uptake at harvest. The normalized difference red-edge index was the top performing VI, explaining 81 % of the variance in wheat N uptake with a regression slope of 1.06 and RMSE of 15.94 kg/ha. Model performance was strong across all farms over all three seasons regardless of crop variety, allowing the creation of high accuracy wheat N uptake maps. In conclusion, for this particular agro-ecosystem, mid-season VIs that incorporate the use of the NIR and red-edge bands are generally better predictors of end-of-season crop N uptake than VIs that do not include these bands, thereby further enabling their use in precision agriculture applications.

Journal

Precision AgricultureSpringer Journals

Published: Aug 10, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off