Mapping TES Temperature Sensitivity and Current Sensitivity as a Function of Temperature, Current, and Magnetic Field with IV Curve and Complex Admittance Measurements

Mapping TES Temperature Sensitivity and Current Sensitivity as a Function of Temperature,... We have specialized astronomical applications for X-ray microcalorimeters with superconducting transition edge sensors (TESs) that require exceptionally good TES performance, but which operate in the small-signal regime. We have therefore begun a program to carefully characterize the entire transition surface of TESs with and without the usual zebra stripes to see if there are reproducible local “sweet spots” where the performance is much better than average. These measurements require precise knowledge of the circuit parameters. Here, we show how the Shapiro effect can be used to precisely calibrate the value of the shunt resistor. We are also investigating the effects of stress and external magnetic fields to better understand reproducibility problems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Low Temperature Physics Springer Journals

Mapping TES Temperature Sensitivity and Current Sensitivity as a Function of Temperature, Current, and Magnetic Field with IV Curve and Complex Admittance Measurements

Loading next page...
 
/lp/springer_journal/mapping-tes-temperature-sensitivity-and-current-sensitivity-as-a-ykLT0ptQpb
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Physics; Condensed Matter Physics; Characterization and Evaluation of Materials; Magnetism, Magnetic Materials
ISSN
0022-2291
eISSN
1573-7357
D.O.I.
10.1007/s10909-018-1970-8
Publisher site
See Article on Publisher Site

Abstract

We have specialized astronomical applications for X-ray microcalorimeters with superconducting transition edge sensors (TESs) that require exceptionally good TES performance, but which operate in the small-signal regime. We have therefore begun a program to carefully characterize the entire transition surface of TESs with and without the usual zebra stripes to see if there are reproducible local “sweet spots” where the performance is much better than average. These measurements require precise knowledge of the circuit parameters. Here, we show how the Shapiro effect can be used to precisely calibrate the value of the shunt resistor. We are also investigating the effects of stress and external magnetic fields to better understand reproducibility problems.

Journal

Journal of Low Temperature PhysicsSpringer Journals

Published: May 29, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off