Mapping QTL for water regime in spring bread wheat

Mapping QTL for water regime in spring bread wheat For the first time, the authors assessed and mapped the chromosome QTLs (Quantitative Trait Loci) for the manifestation of morpho-physiological and agronomic indices of plant water status and related quantitative traits, such as plant height, weight, and dry matter content in spring bread wheat (Triticum aestivum L.). Following the study of ten agronomic traits, 13 QTLs were mapped on linkage groups 1A, 1B, 2B, 2D, 4A, 5A, 5B, 5D, 6A, and 6D. Some of the identified QTLs concurrently determined several traits. The physiological components of water status were shown to correlate with quantitative traits in wheat plants, such as plant height, weight, and dry matter content, and the correlation coefficients were calculated for all traits under study. Water retention capacity after 3 h correlated with water retention capacity after 24 h (r xy = 0.47). The correlations were also established between water retention capacity after 3 h and plant height at booting stage (r xy = 0.29) and between water retention capacity after 3 h and plant dry weight (r xy = 0.33). Statistical calculations supported generally observed negative correlation (up to −1) between leaf water and dry matter contents, as well as between the root indices of variance in the mapping population of wheat lines. The results obtained in the present study will promote future efforts to fine-map the genes residing within the identified QTLs, to eventually clone these genes in order to establish the physiological mechanisms for maintaining water homeostasis in higher plant cells and to accomplish the practical implementation of marker-assisted assessment of water status in wheat plants studied on the basis of morpho-physiological and economical indices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Mapping QTL for water regime in spring bread wheat

Loading next page...
 
/lp/springer_journal/mapping-qtl-for-water-regime-in-spring-bread-wheat-nWeGevGWNm
Publisher
Springer Journals
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443714060041
Publisher site
See Article on Publisher Site

Abstract

For the first time, the authors assessed and mapped the chromosome QTLs (Quantitative Trait Loci) for the manifestation of morpho-physiological and agronomic indices of plant water status and related quantitative traits, such as plant height, weight, and dry matter content in spring bread wheat (Triticum aestivum L.). Following the study of ten agronomic traits, 13 QTLs were mapped on linkage groups 1A, 1B, 2B, 2D, 4A, 5A, 5B, 5D, 6A, and 6D. Some of the identified QTLs concurrently determined several traits. The physiological components of water status were shown to correlate with quantitative traits in wheat plants, such as plant height, weight, and dry matter content, and the correlation coefficients were calculated for all traits under study. Water retention capacity after 3 h correlated with water retention capacity after 24 h (r xy = 0.47). The correlations were also established between water retention capacity after 3 h and plant height at booting stage (r xy = 0.29) and between water retention capacity after 3 h and plant dry weight (r xy = 0.33). Statistical calculations supported generally observed negative correlation (up to −1) between leaf water and dry matter contents, as well as between the root indices of variance in the mapping population of wheat lines. The results obtained in the present study will promote future efforts to fine-map the genes residing within the identified QTLs, to eventually clone these genes in order to establish the physiological mechanisms for maintaining water homeostasis in higher plant cells and to accomplish the practical implementation of marker-assisted assessment of water status in wheat plants studied on the basis of morpho-physiological and economical indices.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 12, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off