Mapping of the quantitative trait loci (QTL) associated with grain quality characteristics of the bread wheat grown under different environmental conditions

Mapping of the quantitative trait loci (QTL) associated with grain quality characteristics of the... The quantitative trait loci (QTL) associated with individual characteristics of grain and flour quality in wheat lines grown under contrasting environmental conditions were mapped. Overall, 22 QTL that manifested under contrasting environmental conditions with various significances were detected on 10 chromosomes. Grain hardness and vitreousness were associated with three loci on chromosomes 5D, 6A, and 3A, while the gluten content, with two loci on chromosomes 5B and 7A. Dough extensibility was associated with only one QTL localized in the region of Glu-A1 locus. One of the loci determining flour and dough strengths is located in the region of Gli-B1 and Glu-B3 loci and the rest, in various regions of chromosomes 1B, 5D, and 4B, where no particular genes associated with grain quality have been yet found. The detected QTL can be used in further experiments on genetic control of gluten formation and quality in wheat. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Mapping of the quantitative trait loci (QTL) associated with grain quality characteristics of the bread wheat grown under different environmental conditions

Loading next page...
 
/lp/springer_journal/mapping-of-the-quantitative-trait-loci-qtl-associated-with-grain-yqvfqoI0oK
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2008 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795408010109
Publisher site
See Article on Publisher Site

Abstract

The quantitative trait loci (QTL) associated with individual characteristics of grain and flour quality in wheat lines grown under contrasting environmental conditions were mapped. Overall, 22 QTL that manifested under contrasting environmental conditions with various significances were detected on 10 chromosomes. Grain hardness and vitreousness were associated with three loci on chromosomes 5D, 6A, and 3A, while the gluten content, with two loci on chromosomes 5B and 7A. Dough extensibility was associated with only one QTL localized in the region of Glu-A1 locus. One of the loci determining flour and dough strengths is located in the region of Gli-B1 and Glu-B3 loci and the rest, in various regions of chromosomes 1B, 5D, and 4B, where no particular genes associated with grain quality have been yet found. The detected QTL can be used in further experiments on genetic control of gluten formation and quality in wheat.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Jan 27, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off