Mapping of genetic modifiers affecting the eye phenotype of ocular retardation (Chx10 or-J ) mice

Mapping of genetic modifiers affecting the eye phenotype of ocular retardation (Chx10 or-J ) mice Ocular retardation is a recessive murine mutation whose phenotypic expression is greatly affected by genetic background effects. Mice of the inbred 129/SvJ background that are homozygous for the Chx10 or-J mutation are blind and have a thin, poorly differentiated retina and no optic nerve. A backcross between 129/SvJ and Mus musculus castaneus (CASA/Rk) produced animals that were homozygous for the Chx10 or-J mutation, yet showed a much milder phenotype. Such animals, when brother-sister mated and selected for mild phenotype for several generations, resulted in partial recovery of visual function, including presence of an optic nerve and pupillary response. In this article we report a genome scan of phenotypic extremes of the backcross to identify the genetic loci affecting this phenotype modification. Our scan revealed significant loci on Chromosomes 6 and 14 where the CASA/Rk alleles are maintained selectively. Markers were developed near candidate genes, but no candidate gene could be identified unequivocally. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Mapping of genetic modifiers affecting the eye phenotype of ocular retardation (Chx10 or-J ) mice

Loading next page...
 
/lp/springer_journal/mapping-of-genetic-modifiers-affecting-the-eye-phenotype-of-ocular-0nVcuOA7qc
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Anatomy; Zoology; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-005-0159-z
Publisher site
See Article on Publisher Site

Abstract

Ocular retardation is a recessive murine mutation whose phenotypic expression is greatly affected by genetic background effects. Mice of the inbred 129/SvJ background that are homozygous for the Chx10 or-J mutation are blind and have a thin, poorly differentiated retina and no optic nerve. A backcross between 129/SvJ and Mus musculus castaneus (CASA/Rk) produced animals that were homozygous for the Chx10 or-J mutation, yet showed a much milder phenotype. Such animals, when brother-sister mated and selected for mild phenotype for several generations, resulted in partial recovery of visual function, including presence of an optic nerve and pupillary response. In this article we report a genome scan of phenotypic extremes of the backcross to identify the genetic loci affecting this phenotype modification. Our scan revealed significant loci on Chromosomes 6 and 14 where the CASA/Rk alleles are maintained selectively. Markers were developed near candidate genes, but no candidate gene could be identified unequivocally.

Journal

Mammalian GenomeSpringer Journals

Published: Jun 12, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off