Mapping of estradiol binding sites through receptor micro-autoradiography in the endometrial stroma of early pregnant mice

Mapping of estradiol binding sites through receptor micro-autoradiography in the endometrial... Estradiol triggers key biological responses in the endometrium, which rely on the presence and levels of its cognate receptors on target cells. Employing the receptor micro-autoradiography (RMAR) technique, we aimed to provide a temporal and spatial map of the functional binding sites for estradiol in the mouse endometrial stroma during early pregnancy. Uterine samples from days 1.5 to 7.5 of pregnancy were collected 1 h after tritiated- (3H-) estradiol administration and prepared for RMAR analysis. Autoradiographic incorporation of 3H-thymidine (after 1-h pulse) was evaluated over the same gestational interval. Combined RMAR with either histochemistry with Dolichus biflorus (DBA) lectin or immunohistochemistry for detection of the desmin further characterized 3H-estradiol binding pattern in uterine Natural Killer (uNK) and decidual cells, respectively. 3H-estradiol binding levels oscillated in the pregnant endometrial stroma between the mesometrial and antimesometrial regions as well as the superficial and deep domains. Although most of the endometrial stromal cells retained the hormone, a sub-population of them, as well as endothelial and uNK cells, were unable to do so. Rises in the levels of 3H-estradiol binding preceded endometrial stromal cell proliferation. 3H-estradiol binding and 3H-thymidine incorporation progressively decreased along the development of the antimesometrial decidua. Endothelial proliferation occurred regardless of 3H-estradiol binding, whereas pericytes proliferation was associated with high levels of hormone binding. Endometrial cell populations autonomously control their levels of 3H-estradiol binding and retention, a process associated with their proliferative competence. Collectively, our results illustrate the intricate regulatory dynamic of nuclear estrogen receptors in the pregnant mouse endometrium. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Histochemistry and Cell Biology Springer Journals

Mapping of estradiol binding sites through receptor micro-autoradiography in the endometrial stroma of early pregnant mice

Loading next page...
 
/lp/springer_journal/mapping-of-estradiol-binding-sites-through-receptor-micro-sBCODtweJA
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Biomedicine; Biomedicine, general; Cell Biology; Biochemistry, general; Developmental Biology
ISSN
0948-6143
eISSN
1432-119X
D.O.I.
10.1007/s00418-017-1568-2
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial