Mapping of a quantitative trait locus for morphine withdrawal severity

Mapping of a quantitative trait locus for morphine withdrawal severity Chronic morphine exposure results in physical dependence, manifested by physical symptoms during naloxone-precipitated withdrawal. Jumping frequency is widely considered the most sensitive and reliable index of withdrawal intensity in mice. Inbred mouse strains surveyed for naloxone-precipitated withdrawal display large and significant strain differences in jumping frequency, including an approximately tenfold difference between C57BL/6 and 129P3 mice. In the present study, (B6 × 129)F2 hybrid mice were given daily morphine injections for four days using an escalating dosing schedule, and naloxone-precipitated withdrawal on day 5 was measured. A full-genome scan for linkage to phenotypic data was performed using polymorphic microsatellite markers. Significant linkage was observed between withdrawal jumping frequencies and a 28 cM-wide region of Chromosome 1 (32–60 cM; peak at 51 cM), accounting for 20% of the overall phenotypic variance. Two other suggestive QTLs were found, on Chromosomes 5 and 10, and an additive model fitting all three loci accounted for 43% of the total variance. F2 mice were also assessed for changes in morphine analgesic potency using the tail-withdrawal test in dose–response studies on days 1 and 4. No linkage was observed between Chromosomes 1, 5, and 10 and morphine analgesic tolerance, suggestive of genetic dissociation of naloxone-precipitated withdrawal from morphine and chronic morphine intake per se. The significant quantitative trait locus for naloxone-precipitated withdrawal severity in morphine-dependent mice, which we name Depmq1, may prove to be of considerable heuristic value once the underlying gene or genes are identified. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Mapping of a quantitative trait locus for morphine withdrawal severity

Loading next page...
 
/lp/springer_journal/mapping-of-a-quantitative-trait-locus-for-morphine-withdrawal-severity-G97lamZuzN
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Philosophy
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-004-2367-3
Publisher site
See Article on Publisher Site

Abstract

Chronic morphine exposure results in physical dependence, manifested by physical symptoms during naloxone-precipitated withdrawal. Jumping frequency is widely considered the most sensitive and reliable index of withdrawal intensity in mice. Inbred mouse strains surveyed for naloxone-precipitated withdrawal display large and significant strain differences in jumping frequency, including an approximately tenfold difference between C57BL/6 and 129P3 mice. In the present study, (B6 × 129)F2 hybrid mice were given daily morphine injections for four days using an escalating dosing schedule, and naloxone-precipitated withdrawal on day 5 was measured. A full-genome scan for linkage to phenotypic data was performed using polymorphic microsatellite markers. Significant linkage was observed between withdrawal jumping frequencies and a 28 cM-wide region of Chromosome 1 (32–60 cM; peak at 51 cM), accounting for 20% of the overall phenotypic variance. Two other suggestive QTLs were found, on Chromosomes 5 and 10, and an additive model fitting all three loci accounted for 43% of the total variance. F2 mice were also assessed for changes in morphine analgesic potency using the tail-withdrawal test in dose–response studies on days 1 and 4. No linkage was observed between Chromosomes 1, 5, and 10 and morphine analgesic tolerance, suggestive of genetic dissociation of naloxone-precipitated withdrawal from morphine and chronic morphine intake per se. The significant quantitative trait locus for naloxone-precipitated withdrawal severity in morphine-dependent mice, which we name Depmq1, may prove to be of considerable heuristic value once the underlying gene or genes are identified.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off