Mapping Grain Sorghum Yield Variability Using Airborne Digital Videography

Mapping Grain Sorghum Yield Variability Using Airborne Digital Videography Mapping crop yield variability is one important aspect of precision agriculture. Combine-mounted yield monitors are becoming widely available for measuring and mapping yields for different crops. This study was designed to assess airborne digital videography as a tool for mapping grain sorghum yields for precision farming. Color-infrared (CIR) imagery was acquired with a three-camera digital video imaging system from two grain sorghum fields in south Texas over the 1995 and 1996 growing seasons. The multispectral video data obtained during the bloom to soft dough stages of plant development were related to hand-harvested grain yields at sampling sites determined from unsupervised image classification maps of the two fields. Significant correlations were found between grain yields and the red band, the green band, and the normalized difference vegetation index (NDVI). Regression equations were developed to describe the relations between grain yields and each of the three significant spectral variables using an exponential model and two segmented models. Multiple linear regression equations were also determined to relate grain yields to the three bands and NDVI. These equations were then used to estimate grain yields at each video image pixel within each field and to generate grain yield maps. Comparisons of the estimated average yields from the regression equations with the actual yields indicated that yield estimation errors from the equations ranged from 0.0 to 10.0% in 1995 and from 0.2 to 7.3% in 1996 for field 1, and from 4.0 to 11.2% in 1995 and 6.3 to 12.5% in 1996 for field 2. Although the equations developed for one field in a given year may not apply to the same field in any other year, the practical value of these relationships is for mapping within-field grain yield variations. The results from this study showed that airborne digital videography, combined with ground sampling, regression analysis, and image processing, could be a useful approach for mapping spatial crop yield variability within fields. Precision Agriculture Springer Journals

Mapping Grain Sorghum Yield Variability Using Airborne Digital Videography

Loading next page...
Kluwer Academic Publishers
Copyright © 2000 by Kluwer Academic Publishers
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial