Mapping crop ground cover using airborne multispectral digital imagery

Mapping crop ground cover using airborne multispectral digital imagery Empirical relationships between remotely sensed vegetation indices and canopy density information, such as leaf area index or ground cover (GC), are commonly used to derive spatial information in many precision farming operations. In this study, we modified an existing methodology that does not depend on empirical relationships and extended it to derive crop GC from high resolution aerial imagery. Using this procedure, GC is calculated for every pixel in the aerial imagery by dividing the perpendicular vegetation index (PVI) of each pixel by the PVI of full canopy. The study was conducted during the summer growing seasons of 2007 and 2008, and involves airborne and ground truth data from 13 agricultural fields in the Southern High Plains of the USA. The results show that the method described in this study can be used to estimate crop GC from high-resolution aerial images with an overall accuracy within 3% of their true values. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Mapping crop ground cover using airborne multispectral digital imagery

Loading next page...
 
/lp/springer_journal/mapping-crop-ground-cover-using-airborne-multispectral-digital-imagery-ZNUNcUq9Hp
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-009-9116-2
Publisher site
See Article on Publisher Site

Abstract

Empirical relationships between remotely sensed vegetation indices and canopy density information, such as leaf area index or ground cover (GC), are commonly used to derive spatial information in many precision farming operations. In this study, we modified an existing methodology that does not depend on empirical relationships and extended it to derive crop GC from high resolution aerial imagery. Using this procedure, GC is calculated for every pixel in the aerial imagery by dividing the perpendicular vegetation index (PVI) of each pixel by the PVI of full canopy. The study was conducted during the summer growing seasons of 2007 and 2008, and involves airborne and ground truth data from 13 agricultural fields in the Southern High Plains of the USA. The results show that the method described in this study can be used to estimate crop GC from high-resolution aerial images with an overall accuracy within 3% of their true values.

Journal

Precision AgricultureSpringer Journals

Published: Mar 31, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off