Mapping cell fate decisions that occur during soybean defense responses

Mapping cell fate decisions that occur during soybean defense responses The soybean defense response to the soybean cyst nematode was used as a model to map at cellular resolution its genotype-defined cell fate decisions occurring during its resistant reactions. The defense responses occur at the site of infection, a nurse cell known as the syncytium. Two major genotype-defined defense responses exist, the G. max [Peking]- and G. max [PI 88788]-types. Resistance in G. max [Peking] is potent and rapid, accompanied by the formation of cell wall appositions (CWAs), structures known to perform important defense roles. In contrast, defense occurs by a potent but more prolonged reaction in G. max [PI 88788], lacking CWAs. Comparative transcriptomic analyses with confirmation by Illumina® deep sequencing were organized through a custom-developed application, Pathway Analysis and Integrated Coloring of Experiments (PAICE) that presents gene expression of these cytologically and developmentally distinct defense responses using the Kyoto Encyclopedia of Genes and Genomes (KEGG) framework. The analyses resulted in the generation of 1,643 PAICE pathways, allowing better understanding of gene activity across all chromosomes. Analyses of the rhg1 resistance locus, defined within a 67 kb region of DNA demonstrate expression of an amino acid transporter and an α soluble NSF attachment protein gene specifically in syncytia undergoing their defense responses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Mapping cell fate decisions that occur during soybean defense responses

Loading next page...
 
/lp/springer_journal/mapping-cell-fate-decisions-that-occur-during-soybean-defense-T0Gz76owVB
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Biochemistry, general; Plant Pathology; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-011-9828-3
Publisher site
See Article on Publisher Site

Abstract

The soybean defense response to the soybean cyst nematode was used as a model to map at cellular resolution its genotype-defined cell fate decisions occurring during its resistant reactions. The defense responses occur at the site of infection, a nurse cell known as the syncytium. Two major genotype-defined defense responses exist, the G. max [Peking]- and G. max [PI 88788]-types. Resistance in G. max [Peking] is potent and rapid, accompanied by the formation of cell wall appositions (CWAs), structures known to perform important defense roles. In contrast, defense occurs by a potent but more prolonged reaction in G. max [PI 88788], lacking CWAs. Comparative transcriptomic analyses with confirmation by Illumina® deep sequencing were organized through a custom-developed application, Pathway Analysis and Integrated Coloring of Experiments (PAICE) that presents gene expression of these cytologically and developmentally distinct defense responses using the Kyoto Encyclopedia of Genes and Genomes (KEGG) framework. The analyses resulted in the generation of 1,643 PAICE pathways, allowing better understanding of gene activity across all chromosomes. Analyses of the rhg1 resistance locus, defined within a 67 kb region of DNA demonstrate expression of an amino acid transporter and an α soluble NSF attachment protein gene specifically in syncytia undergoing their defense responses.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 11, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off