Mapping Aquifer Vulnerability Indices Using Artificial Intelligence-running Multiple Frameworks (AIMF) with Supervised and Unsupervised Learning

Mapping Aquifer Vulnerability Indices Using Artificial Intelligence-running Multiple Frameworks... DRASTIC-based vulnerability indices and their variations for an aquifer are investigated in this paper, each of which is regarded as a framework since their rationale of using seven DRASTIC data layers is consensual and lacks empirical or theoretical formulations. The Basic DRASTIC framework (BDF) is implemented by a set of prescribed rules; whereas its three variations involve unsupervised learning from the data, which comprise: (i) learning the rates by the Wilcoxon test (WDF) but using BDF weights; (ii) using BDF rates but learning the weights by Genetic Algorithm (BDF-GA); and (iii) learning rates as in WDF and the weights as in BDF-GA (WDF-GA). These four frameworks are not supervised, but the novelty of the paper is to introduce supervised learning at the second stage by Artificial Intelligence to run Multiple Frameworks (AIMF), for which the paper uses Support Vector Machine (SVM). AIMF uses the outputs of the four frameworks as its input data and a function of observed nitrate-N values as its target data. The AIMF strategy is evaluated in the aquifer of Ardabil plain, which is exposed to anthropogenic contamination such as nitrate-N. The coefficient of correlation (r-values) between the results and nitrate-N values for the above frameworks are: 0.2, 0.37, 0.38 and 0.45; whereas AIMF enhances it to 0.84; attributable to the supervised learning. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Management Springer Journals

Mapping Aquifer Vulnerability Indices Using Artificial Intelligence-running Multiple Frameworks (AIMF) with Supervised and Unsupervised Learning

Loading next page...
 
/lp/springer_journal/mapping-aquifer-vulnerability-indices-using-artificial-intelligence-3wnuyMG6AL
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Earth Sciences; Hydrogeology; Hydrology/Water Resources; Geotechnical Engineering & Applied Earth Sciences; Atmospheric Sciences; Civil Engineering; Environment, general
ISSN
0920-4741
eISSN
1573-1650
D.O.I.
10.1007/s11269-018-1971-z
Publisher site
See Article on Publisher Site

Abstract

DRASTIC-based vulnerability indices and their variations for an aquifer are investigated in this paper, each of which is regarded as a framework since their rationale of using seven DRASTIC data layers is consensual and lacks empirical or theoretical formulations. The Basic DRASTIC framework (BDF) is implemented by a set of prescribed rules; whereas its three variations involve unsupervised learning from the data, which comprise: (i) learning the rates by the Wilcoxon test (WDF) but using BDF weights; (ii) using BDF rates but learning the weights by Genetic Algorithm (BDF-GA); and (iii) learning rates as in WDF and the weights as in BDF-GA (WDF-GA). These four frameworks are not supervised, but the novelty of the paper is to introduce supervised learning at the second stage by Artificial Intelligence to run Multiple Frameworks (AIMF), for which the paper uses Support Vector Machine (SVM). AIMF uses the outputs of the four frameworks as its input data and a function of observed nitrate-N values as its target data. The AIMF strategy is evaluated in the aquifer of Ardabil plain, which is exposed to anthropogenic contamination such as nitrate-N. The coefficient of correlation (r-values) between the results and nitrate-N values for the above frameworks are: 0.2, 0.37, 0.38 and 0.45; whereas AIMF enhances it to 0.84; attributable to the supervised learning.

Journal

Water Resources ManagementSpringer Journals

Published: Mar 21, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off