MapMerge: correlating independent schema mappings

MapMerge: correlating independent schema mappings One of the main steps toward integration or exchange of data is to design the mappings that describe the (often complex) relationships between the source schemas or formats and the desired target schema. In this paper, we introduce a new operator, called MapMerge, that can be used to correlate multiple, independently designed schema mappings of smaller scope into larger schema mappings. This allows a more modular construction of complex mappings from various types of smaller mappings such as schema correspondences produced by a schema matcher or pre-existing mappings that were designed by either a human user or via mapping tools. In particular, the new operator also enables a new “divide-and-merge” paradigm for mapping creation, where the design is divided (on purpose) into smaller components that are easier to create and understand and where MapMerge is used to automatically generate a meaningful overall mapping. We describe our MapMerge algorithm and demonstrate the feasibility of our implementation on several real and synthetic mapping scenarios. In our experiments, we make use of a novel similarity measure between two database instances with different schemas that quantifies the preservation of data associations. We show experimentally that MapMerge improves the quality of the schema mappings, by significantly increasing the similarity between the input source instance and the generated target instance. Finally, we provide a new algorithm that combines MapMerge with schema mapping composition to correlate flows of schema mappings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

MapMerge: correlating independent schema mappings

Loading next page...
 
/lp/springer_journal/mapmerge-correlating-independent-schema-mappings-iYqDhqkdfb
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-012-0264-z
Publisher site
See Article on Publisher Site

Abstract

One of the main steps toward integration or exchange of data is to design the mappings that describe the (often complex) relationships between the source schemas or formats and the desired target schema. In this paper, we introduce a new operator, called MapMerge, that can be used to correlate multiple, independently designed schema mappings of smaller scope into larger schema mappings. This allows a more modular construction of complex mappings from various types of smaller mappings such as schema correspondences produced by a schema matcher or pre-existing mappings that were designed by either a human user or via mapping tools. In particular, the new operator also enables a new “divide-and-merge” paradigm for mapping creation, where the design is divided (on purpose) into smaller components that are easier to create and understand and where MapMerge is used to automatically generate a meaningful overall mapping. We describe our MapMerge algorithm and demonstrate the feasibility of our implementation on several real and synthetic mapping scenarios. In our experiments, we make use of a novel similarity measure between two database instances with different schemas that quantifies the preservation of data associations. We show experimentally that MapMerge improves the quality of the schema mappings, by significantly increasing the similarity between the input source instance and the generated target instance. Finally, we provide a new algorithm that combines MapMerge with schema mapping composition to correlate flows of schema mappings.

Journal

The VLDB JournalSpringer Journals

Published: Apr 1, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off