MAPKs as a cross point in H2O2 and auxin signaling under combined cadmium and zinc stress in rice roots

MAPKs as a cross point in H2O2 and auxin signaling under combined cadmium and zinc stress in rice... Previously, we have reported the role of MAPKs (mitogen-activated protein kinases) under cadmium stress. This work continue to explore the relationship between MAPKs, H2O2, auxin signaling, and OsHMA and OsZIP gene expression in rice (Oryza sativa L.) roots under combined cadmium (Cd) and zinc (Zn) stress. Compared with Cd, Cd+Zn reduced Cd levels but increased Zn accumulation in the roots. Three OsMAPK genes were negatively regulated, while two OsHMA and two OsZIP genes were positively regulated by MAPK pathways under Cd+Zn stress. Transgenic rice expressing DR5-GUS exhibited enhanced GUS activity in H2O2-, PD (MAPKK inhibitor PD98059)-, or (Cd+Zn)-treated roots, which also exhibited increased H2O2 concentrations, whereas GUS staining decreased in roots in response to Cd+Zn+PD, DMTU (N,N′-dimethylthiourea, a H2O2 scavenger), or Cd+Zn+DMTU treatment, with reduced H2O2 levels. GUS levels were consistent with H2O2 levels, suggesting that MAPK pathway-mediated auxin redistribution occurs via H2O2, and H2O2 functions downstream of MAPK but upstream of auxin signaling pathways. Furthermore, MAPK pathways serve specific functions in regulating the expression of some key genes of auxin signaling (OsYUCCA, OsPIN, OsARF, and OsIAA) under Cd+Zn stress. Overall, MAPK cascades function in the integration of metal transport, H2O2 generation, and auxin signaling in rice seedlings grown under Cd+Zn stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

MAPKs as a cross point in H2O2 and auxin signaling under combined cadmium and zinc stress in rice roots

Loading next page...
 
/lp/springer_journal/mapks-as-a-cross-point-in-h2o2-and-auxin-signaling-under-combined-yxcP605WYE
Publisher
Pleiades Publishing
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443714040232
Publisher site
See Article on Publisher Site

Abstract

Previously, we have reported the role of MAPKs (mitogen-activated protein kinases) under cadmium stress. This work continue to explore the relationship between MAPKs, H2O2, auxin signaling, and OsHMA and OsZIP gene expression in rice (Oryza sativa L.) roots under combined cadmium (Cd) and zinc (Zn) stress. Compared with Cd, Cd+Zn reduced Cd levels but increased Zn accumulation in the roots. Three OsMAPK genes were negatively regulated, while two OsHMA and two OsZIP genes were positively regulated by MAPK pathways under Cd+Zn stress. Transgenic rice expressing DR5-GUS exhibited enhanced GUS activity in H2O2-, PD (MAPKK inhibitor PD98059)-, or (Cd+Zn)-treated roots, which also exhibited increased H2O2 concentrations, whereas GUS staining decreased in roots in response to Cd+Zn+PD, DMTU (N,N′-dimethylthiourea, a H2O2 scavenger), or Cd+Zn+DMTU treatment, with reduced H2O2 levels. GUS levels were consistent with H2O2 levels, suggesting that MAPK pathway-mediated auxin redistribution occurs via H2O2, and H2O2 functions downstream of MAPK but upstream of auxin signaling pathways. Furthermore, MAPK pathways serve specific functions in regulating the expression of some key genes of auxin signaling (OsYUCCA, OsPIN, OsARF, and OsIAA) under Cd+Zn stress. Overall, MAPK cascades function in the integration of metal transport, H2O2 generation, and auxin signaling in rice seedlings grown under Cd+Zn stress.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 21, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off