Manufacturability evaluation for molded parts using fictitious physical models, and its application in topology optimization

Manufacturability evaluation for molded parts using fictitious physical models, and its... Manufacturing methods using molds, such as casting and injection molding, are widely used in industries. A basic requirement when using such manufacturing methods is that design engineers must design products so that they incorporate certain geometrical features that allow the mold parts to be removed from the created solid object. In the present study, we propose a manufacturability evaluation method especially adapted for the use of molds. To evaluate the manufacturability, we introduce fictitious physical models that are described by steady-state anisotropic advection-diffusion equations. In these fictitious physical models, material domains have a virtual source term and the advection directions are aligned with the directions along which the mold parts are parted. Void regions, where the values of all fictitious physical fields are high, then represent either undercut geometries that would prevent the mold from being released, or interior voids that cannot be cast. Consequently, manufacturability can be evaluated using these fictitious physical fields. Furthermore, in the present study, we integrate this evaluation method with topology optimization and propose a scheme for imposing a molding constraint within the topology optimization procedure. This newly proposed topology optimization method can consider the position of mold parting lines prior to the detailed optimization procedure. Several numerical examples are provided to demonstrate the validity and effectiveness of the proposed method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Manufacturability evaluation for molded parts using fictitious physical models, and its application in topology optimization

Loading next page...
 
/lp/springer_journal/manufacturability-evaluation-for-molded-parts-using-fictitious-n2IBmqyhFc
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0218-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial