Management Zones Classified With Respect to Drought and Waterlogging

Management Zones Classified With Respect to Drought and Waterlogging Within-field variations in potential grain yield may be due to variations in plant available soil water. Different water holding capacities affect yield differently in different years depending on weather. By estimating plant-water availability in different weathers, scenarios could be created of how yield potential and thereby fertilizer demand may vary within fields. To test this, measured cereal grain yields from a dry, a wet and an intermediate year were compared with different soil moisture related variables in a Swedish arable field consisting of clayey and sandy areas. Soil water budget calculations based on weather data and maximum plant available water (PAW), estimated from soil type and rooting data, were used to assess drought. A reasonable correlation between estimated and measured soil moisture was achieved. In the dry year, drought days explained differences in yield between the clayey and the sandy soil, but yield was better explained directly by maximum PAW, elevation, clay content and soil electrical conductivity (SEC). Yield correlated significantly with SEC and elevation within the sandy soil in the dry year and within the clayey soil in the wet year, probably due to water and nitrogen limitation respectively. Dense SEC, elevation and yield data were therefore used to divide the field into management zones representing different risk levels for drought and waterlogging. These could be used as a decision support tool for site-specific N fertilization, since both drought and waterlogging affect N fertilization demand. Precision Agriculture Springer Journals

Management Zones Classified With Respect to Drought and Waterlogging

Loading next page...
Kluwer Academic Publishers
Copyright © 2005 by Springer Science+Business Media, Inc.
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


  • Continuous classification in soil survey: Spatial correlation, confusion and boundaries
    Burrough, P. A.; Gaans, P. F. M.; Hootsmans, R.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial