Management regime is the most important factor influencing ectomycorrhizal species community in Norway spruce forests after windthrow

Management regime is the most important factor influencing ectomycorrhizal species community in... Ectomycorrhizal (ECM) fungi, as symbionts of many tree species in temperate forests, are thought to play an important role in forest regeneration processes after large disturbances. Their reaction to different disturbance and management regimes was studied in spruce forests (Lariceto-Piceetum) 10 years after a severe windthrow in the Tatra National Park (Slovak Republic). ECM community structure was compared between different “management types″—cleared area (EXT), area affected by wildfire (FIRE), uncleared area left for natural development (NEX), and mature forest as a control (REF). Based on Illumina sequencing of soil samples, we determined that the percentage of sequences assigned to ECM fungi decreased with increasing disturbance and management intensity (REF → NEX → EXT → FIRE). Similarly, the total number of ECM species per each of ten sampling points per plot (100 ha) differed between managed (EXT-11 species, FIRE-9) and unmanaged (NEX-16, REF-14) treatments. On the other hand, the percentage of sequences belonging to ericoid mycorrhizal fungi increased. Management type significantly influenced the composition of the ECM community, while vegetation and soil characteristics explained less data variation. The ECM species assemblage of the unmanaged site (NEX) was the most similar to the mature forest, while that of the burnt site was the most different. Thelephora terrestris dominated in all treatments affected by windthrow, accompanied by Tylospora fibrillosa (NEX) and Tylospora asterophora (EXT and FIRE). Management regime was also the most important factor affecting ECM species composition on the roots of spruce seedlings assessed by Sanger sequencing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mycorrhiza Springer Journals

Management regime is the most important factor influencing ectomycorrhizal species community in Norway spruce forests after windthrow

Loading next page...
 
/lp/springer_journal/management-regime-is-the-most-important-factor-influencing-M3XLDG5G4d
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Microbiology; Plant Sciences; Ecology; Agriculture; Forestry
ISSN
0940-6360
eISSN
1432-1890
D.O.I.
10.1007/s00572-018-0820-5
Publisher site
See Article on Publisher Site

Abstract

Ectomycorrhizal (ECM) fungi, as symbionts of many tree species in temperate forests, are thought to play an important role in forest regeneration processes after large disturbances. Their reaction to different disturbance and management regimes was studied in spruce forests (Lariceto-Piceetum) 10 years after a severe windthrow in the Tatra National Park (Slovak Republic). ECM community structure was compared between different “management types″—cleared area (EXT), area affected by wildfire (FIRE), uncleared area left for natural development (NEX), and mature forest as a control (REF). Based on Illumina sequencing of soil samples, we determined that the percentage of sequences assigned to ECM fungi decreased with increasing disturbance and management intensity (REF → NEX → EXT → FIRE). Similarly, the total number of ECM species per each of ten sampling points per plot (100 ha) differed between managed (EXT-11 species, FIRE-9) and unmanaged (NEX-16, REF-14) treatments. On the other hand, the percentage of sequences belonging to ericoid mycorrhizal fungi increased. Management type significantly influenced the composition of the ECM community, while vegetation and soil characteristics explained less data variation. The ECM species assemblage of the unmanaged site (NEX) was the most similar to the mature forest, while that of the burnt site was the most different. Thelephora terrestris dominated in all treatments affected by windthrow, accompanied by Tylospora fibrillosa (NEX) and Tylospora asterophora (EXT and FIRE). Management regime was also the most important factor affecting ECM species composition on the roots of spruce seedlings assessed by Sanger sequencing.

Journal

MycorrhizaSpringer Journals

Published: Jan 19, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off