Mammalian Amino Acid Transport System y+ Revisited: Specificity and Cation Dependence of the Interaction with Neutral Amino Acids

Mammalian Amino Acid Transport System y+ Revisited: Specificity and Cation Dependence of the... A reevaluation of the specificity of system y+, the classical transporter for cationic amino acids is presented. System y+ has been defined as a transporter for cationic amino acids that binds neutral amino acids with lower affinity in the presence of Na+. The discovery of other transporters for cationic amino has suggested that some properties, originally attributed to system y+, may relate to other transport systems. Uncertainty concerns mainly, the affinity for neutral amino acids and the cation dependence of this interaction. Neutral amino acids (13 analogues tested) were found to bind to system y+ in human erythrocytes with very low affinity. Inhibition constants (Kiy, mm) ranged between 14.2 mm and >400 mm, and the strength of interaction was similar in the presence of Na+, K+ or Li+ (145 mm). In choline medium, no interaction was detected up to 20 mm of the neutral amino acid. Guanidinium ion (5 mm, osmolarity maintained with choline) potentiated neutral amino acid binding; the effect was most important in the case of l-norvaline which aligned with guanidinium ion is equivalent to arginine. This suggests cooperative interaction at the substrate site. The specificity of system y+ was shown to be clearly distinct from that of system y+L, a cationic amino acid transporter that accepts neutral amino acids with high affinity in the presence of Na+ and which influenced the classical definition of system y+. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Mammalian Amino Acid Transport System y+ Revisited: Specificity and Cation Dependence of the Interaction with Neutral Amino Acids

Loading next page...
 
/lp/springer_journal/mammalian-amino-acid-transport-system-y-revisited-specificity-and-Trfy7MZcap
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900509
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial