Male scent-marking pheromone of Bombus ardens ardens (Hymenoptera; Apidae) attracts both conspecific queens and males

Male scent-marking pheromone of Bombus ardens ardens (Hymenoptera; Apidae) attracts both... To explore the role of the volatiles emitted from male labial gland (LG) of the bumblebee Bombus ardens ardens, we investigated the responses of virgin queens and males to volatiles using a gas chromatography–electroantennographic detector (GC–EAD) system and Y-tube olfactometer. GC–EAD analysis revealed that citronellol, the main compound detected in the male LG, caused clear electrophysiological responses in the antennae of B. a. ardens virgin queens and males although two minor compounds elicited antennal responses when applied in a high concentration. Behavioral tests using a Y-tube olfactometer showed that queens and males were significantly attracted to both LG extracts and citronellol more than to the solvent alone. This is the first study to demonstrate that citronellol as a major compound of male scent-marking pheromone in B. a. ardens functions as a sex attractant for queens. The results also suggest that this compound has another function as a trail marker used by males. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Naturwissenschaften Springer Journals

Male scent-marking pheromone of Bombus ardens ardens (Hymenoptera; Apidae) attracts both conspecific queens and males

Loading next page...
 
/lp/springer_journal/male-scent-marking-pheromone-of-bombus-ardens-ardens-hymenoptera-NzCMoFY0CX
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Life Sciences, general; Environment, general
ISSN
0028-1042
eISSN
1432-1904
D.O.I.
10.1007/s00114-017-1493-1
Publisher site
See Article on Publisher Site

Abstract

To explore the role of the volatiles emitted from male labial gland (LG) of the bumblebee Bombus ardens ardens, we investigated the responses of virgin queens and males to volatiles using a gas chromatography–electroantennographic detector (GC–EAD) system and Y-tube olfactometer. GC–EAD analysis revealed that citronellol, the main compound detected in the male LG, caused clear electrophysiological responses in the antennae of B. a. ardens virgin queens and males although two minor compounds elicited antennal responses when applied in a high concentration. Behavioral tests using a Y-tube olfactometer showed that queens and males were significantly attracted to both LG extracts and citronellol more than to the solvent alone. This is the first study to demonstrate that citronellol as a major compound of male scent-marking pheromone in B. a. ardens functions as a sex attractant for queens. The results also suggest that this compound has another function as a trail marker used by males.

Journal

NaturwissenschaftenSpringer Journals

Published: Aug 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off