Majorana representation of symmetric multiqubit states

Majorana representation of symmetric multiqubit states As early as 1932, Majorana had proposed that a pure permutation symmetric state of N spin- $${\frac{1}{2}}$$ particles can be represented by N spinors, which correspond geometrically to N points on the Bloch sphere. Several decades after its conception, the Majorana representation has recently attracted a great deal of attention in connection with multiparticle entanglement. A novel use of this representation led to the classification of entanglement families of permutation symmetric qubits—based on the number of distinct spinors and their arrangement in constituting the multiqubit state. An elegant approach to explore how correlation information of the whole pure symmetric state gets imprinted in its parts is developed for specific entanglement classes of symmetric states. Moreover, an elegant and simplified method to evaluate geometric measure of entanglement in N-qubit states obeying exchange symmetry has been developed based on the distribution of the constituent Majorana spionors over the unit sphere. Multiparticle entanglement being a key resource in several quantum information processing tasks, its deeper understanding is essential. In this review, we present a detailed description of the Majorana representation of pure symmetric states and its applicability in investigating various aspects of multiparticle entanglement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Majorana representation of symmetric multiqubit states

Loading next page...
 
/lp/springer_journal/majorana-representation-of-symmetric-multiqubit-states-APP3DMhg03
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Physics; Theoretical, Mathematical and Computational Physics; Mathematics, general; Quantum Physics; Physics, general; Computer Science, general
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-011-0280-8
Publisher site
See Article on Publisher Site

Abstract

As early as 1932, Majorana had proposed that a pure permutation symmetric state of N spin- $${\frac{1}{2}}$$ particles can be represented by N spinors, which correspond geometrically to N points on the Bloch sphere. Several decades after its conception, the Majorana representation has recently attracted a great deal of attention in connection with multiparticle entanglement. A novel use of this representation led to the classification of entanglement families of permutation symmetric qubits—based on the number of distinct spinors and their arrangement in constituting the multiqubit state. An elegant approach to explore how correlation information of the whole pure symmetric state gets imprinted in its parts is developed for specific entanglement classes of symmetric states. Moreover, an elegant and simplified method to evaluate geometric measure of entanglement in N-qubit states obeying exchange symmetry has been developed based on the distribution of the constituent Majorana spionors over the unit sphere. Multiparticle entanglement being a key resource in several quantum information processing tasks, its deeper understanding is essential. In this review, we present a detailed description of the Majorana representation of pure symmetric states and its applicability in investigating various aspects of multiparticle entanglement.

Journal

Quantum Information ProcessingSpringer Journals

Published: Aug 27, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off