Maize Nitrogen Response as Affected by Soil Type and Drainage Variability

Maize Nitrogen Response as Affected by Soil Type and Drainage Variability Site-specific application of nitrogen (N) to maize (Zea mays L.) may provide economic and environmental benefits. Variations in soil drainage and texture within fields are often believed to cause localized differences in soil N availability and therefore are a potential basis for site-specific N fertilizer application. The objective of this study was to evaluate the effect of imposed variations in drainage conditions in two soils on early season soil water conditions, soil nitrate levels, and crop response to N fertilizer. Maize was grown for three years following conversion from sod. Two soil drainage regimes and three N rates (22, 100 and 134 kg ha−1) were experimentally imposed on plots on two soil types, a clay loam and a loamy sand. Soil water potential and soil nitrate content were intensively monitored for the 0–150 and 150–300 mm soil layers during the early growing season. Early season soil water potentials showed small effects of drainage variability at the 75 and 225 mm depths. However, the clay loam soil experienced prolonged periods of saturation after significant precipitation, while the loamy sand never experienced such conditions. Soil nitrate levels were strongly affected by cropping history, but were also subjected to losses as a result of precipitation and short-term soil saturation. Maize N response was minimally affected by differences in soil drainage conditions in all 3 years. In years with a wet spring, justification exists for higher N fertilizer rates on finer-textured soils. This study therefore showed only moderate potential for varying N application within fields based on soil type and drainage conditions, but suggests that seasonal differences in N dynamics greatly affect maize N response. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Maize Nitrogen Response as Affected by Soil Type and Drainage Variability

Loading next page...
 
/lp/springer_journal/maize-nitrogen-response-as-affected-by-soil-type-and-drainage-F5wO0sYOih
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-005-1387-7
Publisher site
See Article on Publisher Site

Abstract

Site-specific application of nitrogen (N) to maize (Zea mays L.) may provide economic and environmental benefits. Variations in soil drainage and texture within fields are often believed to cause localized differences in soil N availability and therefore are a potential basis for site-specific N fertilizer application. The objective of this study was to evaluate the effect of imposed variations in drainage conditions in two soils on early season soil water conditions, soil nitrate levels, and crop response to N fertilizer. Maize was grown for three years following conversion from sod. Two soil drainage regimes and three N rates (22, 100 and 134 kg ha−1) were experimentally imposed on plots on two soil types, a clay loam and a loamy sand. Soil water potential and soil nitrate content were intensively monitored for the 0–150 and 150–300 mm soil layers during the early growing season. Early season soil water potentials showed small effects of drainage variability at the 75 and 225 mm depths. However, the clay loam soil experienced prolonged periods of saturation after significant precipitation, while the loamy sand never experienced such conditions. Soil nitrate levels were strongly affected by cropping history, but were also subjected to losses as a result of precipitation and short-term soil saturation. Maize N response was minimally affected by differences in soil drainage conditions in all 3 years. In years with a wet spring, justification exists for higher N fertilizer rates on finer-textured soils. This study therefore showed only moderate potential for varying N application within fields based on soil type and drainage conditions, but suggests that seasonal differences in N dynamics greatly affect maize N response.

Journal

Precision AgricultureSpringer Journals

Published: Apr 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off