Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Magnetic Solid-Phase Extraction of Oxadiazon and Profenofos from Environmental Water Using Magnetite Fe3O4@SiO2–C18 Nanoparticles

Magnetic Solid-Phase Extraction of Oxadiazon and Profenofos from Environmental Water Using... In this study, a method for extraction and preconcentration trace amounts of two organophosphorus pesticides (oxadiazon and profenofos) in environmental water was developed by using magnetic solid phase extraction followed by high performance liquid chromatography-ultraviolet detection. The Fe3O4@SiO2–C18 nanoparticles were synthesized by the chemical coprecipitation method and characterized by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, and vibrating sample magnetometer. The Fe3O4@SiO2–C18 nanoparticles were also easily separated via an external magnetic field during extraction process of oxadiazon and profenofos from environmental water. The influence of several variables including the pH of sample, sorption time, sorbent amount, eluent solvent and its volume and salt concentration in the extraction process was investigated. For this purpose, a multivariate strategy based on central composite design and desirability function was applied in order to optimize the significant variables. Under the optimum conditions, detection limits were 0.05 and 0.07 ng mL−1 for profenofos and oxadiazon, respectively. Linear dynamic ranges were achieved in the range of 0.5–10 ng mL−1 for two analytes. The relative recoveries (RR%) along with relative standard deviation (RSD%) (n = 5) were obtained to be 90 % (RSD = 9.2 %) and 86 % (RSD = 9.8 %) for oxadiazon and profenofos, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Polymers and the Environment Springer Journals

Magnetic Solid-Phase Extraction of Oxadiazon and Profenofos from Environmental Water Using Magnetite Fe3O4@SiO2–C18 Nanoparticles

Loading next page...
 
/lp/springer_journal/magnetic-solid-phase-extraction-of-oxadiazon-and-profenofos-from-azqOrRQeZB

References (59)

Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Chemistry; Polymer Sciences; Environmental Chemistry; Materials Science, general; Environmental Engineering/Biotechnology; Industrial Chemistry/Chemical Engineering
ISSN
1566-2543
eISSN
1572-8900
DOI
10.1007/s10924-016-0859-3
Publisher site
See Article on Publisher Site

Abstract

In this study, a method for extraction and preconcentration trace amounts of two organophosphorus pesticides (oxadiazon and profenofos) in environmental water was developed by using magnetic solid phase extraction followed by high performance liquid chromatography-ultraviolet detection. The Fe3O4@SiO2–C18 nanoparticles were synthesized by the chemical coprecipitation method and characterized by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, and vibrating sample magnetometer. The Fe3O4@SiO2–C18 nanoparticles were also easily separated via an external magnetic field during extraction process of oxadiazon and profenofos from environmental water. The influence of several variables including the pH of sample, sorption time, sorbent amount, eluent solvent and its volume and salt concentration in the extraction process was investigated. For this purpose, a multivariate strategy based on central composite design and desirability function was applied in order to optimize the significant variables. Under the optimum conditions, detection limits were 0.05 and 0.07 ng mL−1 for profenofos and oxadiazon, respectively. Linear dynamic ranges were achieved in the range of 0.5–10 ng mL−1 for two analytes. The relative recoveries (RR%) along with relative standard deviation (RSD%) (n = 5) were obtained to be 90 % (RSD = 9.2 %) and 86 % (RSD = 9.8 %) for oxadiazon and profenofos, respectively.

Journal

Journal of Polymers and the EnvironmentSpringer Journals

Published: Oct 12, 2016

There are no references for this article.