Magnetic Solid-Phase Extraction of Oxadiazon and Profenofos from Environmental Water Using Magnetite Fe3O4@SiO2–C18 Nanoparticles

Magnetic Solid-Phase Extraction of Oxadiazon and Profenofos from Environmental Water Using... In this study, a method for extraction and preconcentration trace amounts of two organophosphorus pesticides (oxadiazon and profenofos) in environmental water was developed by using magnetic solid phase extraction followed by high performance liquid chromatography-ultraviolet detection. The Fe3O4@SiO2–C18 nanoparticles were synthesized by the chemical coprecipitation method and characterized by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, and vibrating sample magnetometer. The Fe3O4@SiO2–C18 nanoparticles were also easily separated via an external magnetic field during extraction process of oxadiazon and profenofos from environmental water. The influence of several variables including the pH of sample, sorption time, sorbent amount, eluent solvent and its volume and salt concentration in the extraction process was investigated. For this purpose, a multivariate strategy based on central composite design and desirability function was applied in order to optimize the significant variables. Under the optimum conditions, detection limits were 0.05 and 0.07 ng mL−1 for profenofos and oxadiazon, respectively. Linear dynamic ranges were achieved in the range of 0.5–10 ng mL−1 for two analytes. The relative recoveries (RR%) along with relative standard deviation (RSD%) (n = 5) were obtained to be 90 % (RSD = 9.2 %) and 86 % (RSD = 9.8 %) for oxadiazon and profenofos, respectively. Journal of Polymers and the Environment Springer Journals

Magnetic Solid-Phase Extraction of Oxadiazon and Profenofos from Environmental Water Using Magnetite Fe3O4@SiO2–C18 Nanoparticles

Loading next page...
Springer US
Copyright © 2016 by Springer Science+Business Media New York
Chemistry; Polymer Sciences; Environmental Chemistry; Materials Science, general; Environmental Engineering/Biotechnology; Industrial Chemistry/Chemical Engineering
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial