Magnetic dual task-specific polymeric ionic liquid nanoparticles for preconcentration and determination of gold, palladium and platinum prior to their quantitation by graphite furnace AAS

Magnetic dual task-specific polymeric ionic liquid nanoparticles for preconcentration and... The authors describe a hybrid of magnetic task-specific poly(ionic liquid) containing dual task-specific sites in an approach to both preconcentrate and quantify gold(III), palladium(II) and platinum(IV). The hybrid was obtained by successive alkaline coprecipitation, sol-gel, quaternization, elimination, anion exchange and polymerization. The material was characterized by scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, thermal gravimetric analysis, X-ray photoelectron spectrometry, X-ray diffractometry, and vibrating sample magnetometry. It was applied as an effective sorbent for magnetic solid-phase extraction of gold(III), palladium(II) and platinum(IV) ions. The effects of sample pH, amount of adsorbent, extraction time, eluent concentration and volume were optimized. Following elution with a thiourea/HCl solution, the ions were quantified by graphite furnace AAS. The calibration plot is linear in the 50 to 350 ng·L−1 gold(III) concentration range, in the 50 to 650 ng·L−1 palladium(II) concentration range, and in the 150 to 2100 ng L−1 platinum(IV), respectively. Other figures of merit for noble metals determination, respective, include (a) detection limits of at 19.7, 22.3 and 107.0 ng·L−1, (b) enrichment factors of 197, 174 and 168; and (c) reproducibilities (expressed as relative standard deviations) of 2.1%, 1.4% and 1.5%. In our perception, the method excels by its high sensitivity and preconcentration capability. It was successfully applied to the determination of gold(III), palladium(II) and platinum(IV) in certified reference materials and (spiked) real samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microchimica Acta Springer Journals

Magnetic dual task-specific polymeric ionic liquid nanoparticles for preconcentration and determination of gold, palladium and platinum prior to their quantitation by graphite furnace AAS

Loading next page...
 
/lp/springer_journal/magnetic-dual-task-specific-polymeric-ionic-liquid-nanoparticles-for-0ObUsuYad5
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Austria
Subject
Chemistry; Nanochemistry; Nanotechnology; Characterization and Evaluation of Materials; Analytical Chemistry; Microengineering
ISSN
0026-3672
eISSN
1436-5073
D.O.I.
10.1007/s00604-017-2354-5
Publisher site
See Article on Publisher Site

Abstract

The authors describe a hybrid of magnetic task-specific poly(ionic liquid) containing dual task-specific sites in an approach to both preconcentrate and quantify gold(III), palladium(II) and platinum(IV). The hybrid was obtained by successive alkaline coprecipitation, sol-gel, quaternization, elimination, anion exchange and polymerization. The material was characterized by scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, thermal gravimetric analysis, X-ray photoelectron spectrometry, X-ray diffractometry, and vibrating sample magnetometry. It was applied as an effective sorbent for magnetic solid-phase extraction of gold(III), palladium(II) and platinum(IV) ions. The effects of sample pH, amount of adsorbent, extraction time, eluent concentration and volume were optimized. Following elution with a thiourea/HCl solution, the ions were quantified by graphite furnace AAS. The calibration plot is linear in the 50 to 350 ng·L−1 gold(III) concentration range, in the 50 to 650 ng·L−1 palladium(II) concentration range, and in the 150 to 2100 ng L−1 platinum(IV), respectively. Other figures of merit for noble metals determination, respective, include (a) detection limits of at 19.7, 22.3 and 107.0 ng·L−1, (b) enrichment factors of 197, 174 and 168; and (c) reproducibilities (expressed as relative standard deviations) of 2.1%, 1.4% and 1.5%. In our perception, the method excels by its high sensitivity and preconcentration capability. It was successfully applied to the determination of gold(III), palladium(II) and platinum(IV) in certified reference materials and (spiked) real samples.

Journal

Microchimica ActaSpringer Journals

Published: Jun 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off