Magnetic and Thermal Design of HTS Quadrupole Magnet for Newly Developed Superconducting Proton Cyclotron Beam Line

Magnetic and Thermal Design of HTS Quadrupole Magnet for Newly Developed Superconducting Proton... A magnetic and thermal design of high-temperature superconducting (HTS) quadrupole magnet for newly developed superconducting proton cyclotron was presented in this research. With superconducting technology, the design can reduce the magnet size and remove the heat loads more efficiently. Calculations are conducted with finite element method (FEM) to study the quadrupole magnet’s magnetic and thermal properties. For the magnet cold-mass and cryostat system, the heat load is mainly generated by conduction and radiation. Multilayer thermal insulation and G10 supports are used to restrict them. The magnetic field distribution in the HTS coils is calculated to consider the critical current degradation of the YBCO tapes. The effects on the field gradient quality in relation to the pole tip profile and end chamfer are analyzed. The sixth multipole component in the integral field can be improved with end chamfer. Finally, a 20 T/m HTS quadrupole magnet with integral field uniformity less than 0.05% out to 75% of the inscribed radius is proposed. Keywords HTS · Quadrupole magnet · Thermal shield · Heat load · Field quality 1 Introduction A design of superconducting magnets for a compact carbon gantry is presented in [4], and the magnetic field and In recent years, the http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Superconductivity and Novel Magnetism Springer Journals

Magnetic and Thermal Design of HTS Quadrupole Magnet for Newly Developed Superconducting Proton Cyclotron Beam Line

Loading next page...
 
/lp/springer_journal/magnetic-and-thermal-design-of-hts-quadrupole-magnet-for-newly-Nzj3xJ7N7A
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Physics; Strongly Correlated Systems, Superconductivity; Magnetism, Magnetic Materials; Condensed Matter Physics; Characterization and Evaluation of Materials
ISSN
1557-1939
eISSN
1557-1947
D.O.I.
10.1007/s10948-018-4736-2
Publisher site
See Article on Publisher Site

Abstract

A magnetic and thermal design of high-temperature superconducting (HTS) quadrupole magnet for newly developed superconducting proton cyclotron was presented in this research. With superconducting technology, the design can reduce the magnet size and remove the heat loads more efficiently. Calculations are conducted with finite element method (FEM) to study the quadrupole magnet’s magnetic and thermal properties. For the magnet cold-mass and cryostat system, the heat load is mainly generated by conduction and radiation. Multilayer thermal insulation and G10 supports are used to restrict them. The magnetic field distribution in the HTS coils is calculated to consider the critical current degradation of the YBCO tapes. The effects on the field gradient quality in relation to the pole tip profile and end chamfer are analyzed. The sixth multipole component in the integral field can be improved with end chamfer. Finally, a 20 T/m HTS quadrupole magnet with integral field uniformity less than 0.05% out to 75% of the inscribed radius is proposed. Keywords HTS · Quadrupole magnet · Thermal shield · Heat load · Field quality 1 Introduction A design of superconducting magnets for a compact carbon gantry is presented in [4], and the magnetic field and In recent years, the

Journal

Journal of Superconductivity and Novel MagnetismSpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off