Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating

Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating Low-mass M stars are plentiful in the Universe and often host small, rocky planets detectable with current instrumentation. These stars host magnetic fields, some of which have been observed to exceed a few hundred gauss. Recently, seven small planets have been discovered orbiting the ultra-cool M dwarf TRAPPIST-1, which has an observed magnetic field of 600 G. We suggest electromagnetic induction heating as an energy source inside these planets. If the stellar rotation and magnetic dipole axes are inclined with respect to each other, induction heating can melt the upper mantle and enormously increase volcanic activity, sometimes producing a magma ocean below the planetary surface. We show that induction heating leads the four innermost TRAPPIST-1 planets, one of which is in the habitable zone, either to evolve towards a molten mantle planet, or to experience increased outgassing and volcanic activity, while the three outermost planets remain mostly unaffected. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Astronomy Springer Journals

Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating

Loading next page...
 
/lp/springer_journal/magma-oceans-and-enhanced-volcanism-on-trappist-1-planets-due-to-hP7d0ZmhkC
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Physics; Physics, general; Astronomy, Astrophysics and Cosmology
eISSN
2397-3366
D.O.I.
10.1038/s41550-017-0284-0
Publisher site
See Article on Publisher Site

Abstract

Low-mass M stars are plentiful in the Universe and often host small, rocky planets detectable with current instrumentation. These stars host magnetic fields, some of which have been observed to exceed a few hundred gauss. Recently, seven small planets have been discovered orbiting the ultra-cool M dwarf TRAPPIST-1, which has an observed magnetic field of 600 G. We suggest electromagnetic induction heating as an energy source inside these planets. If the stellar rotation and magnetic dipole axes are inclined with respect to each other, induction heating can melt the upper mantle and enormously increase volcanic activity, sometimes producing a magma ocean below the planetary surface. We show that induction heating leads the four innermost TRAPPIST-1 planets, one of which is in the habitable zone, either to evolve towards a molten mantle planet, or to experience increased outgassing and volcanic activity, while the three outermost planets remain mostly unaffected.

Journal

Nature AstronomySpringer Journals

Published: Oct 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off