Machining of microchannel at SS316 surface using abrasive-assisted electrochemical jet machining

Machining of microchannel at SS316 surface using abrasive-assisted electrochemical jet machining Metallic microchannels are increasingly used in fuel cell, MEMS component, cutter, and micromold due to functions of fluid feed and heat exchange. Abrasive-assisted electrochemical jet machining (AECJM) is a hybrid manufacturing technology coupling erosion and corrosion concurrently to remove metals. It shows a great potential in machining microchannels with complex patterns at metallic surface. The present work explored the feasibility of patterning complex microchannels at SS316 surface using AECJM at a condition of Al2O3 abrasives, NaNO3 solution, and DC potential. A series of microchannels were machined by AECJM to investigate the effects of process conditions on the material removal rate, machining current density, aspect ratio, and surface roughness. The results show that the anodic dissolution dominates material removal in the AECJM of SS316 at present conditions. The material removal rate nonlinearly correlates with machining current density between approximate 3 to 10 A/cm2 due to a nonlinear relationship of current efficiency and current density. It is also shown that the anodic dissolution can be influenced positively or negatively by abrasives impingement due to the synergy of erosion and corrosion. Relatively higher abrasive dose and jet velocity result in a reduction of anodic dissolution and however an increase of abrasive erosion. The experiments of fabricating complex patterns demonstrate that AECJM has a high potential to machine microchannels at SS316 efficiently and economically. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Machining of microchannel at SS316 surface using abrasive-assisted electrochemical jet machining

Loading next page...
 
/lp/springer_journal/machining-of-microchannel-at-ss316-surface-using-abrasive-assisted-wcDcalvqqA
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd.
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1247-4
Publisher site
See Article on Publisher Site

Abstract

Metallic microchannels are increasingly used in fuel cell, MEMS component, cutter, and micromold due to functions of fluid feed and heat exchange. Abrasive-assisted electrochemical jet machining (AECJM) is a hybrid manufacturing technology coupling erosion and corrosion concurrently to remove metals. It shows a great potential in machining microchannels with complex patterns at metallic surface. The present work explored the feasibility of patterning complex microchannels at SS316 surface using AECJM at a condition of Al2O3 abrasives, NaNO3 solution, and DC potential. A series of microchannels were machined by AECJM to investigate the effects of process conditions on the material removal rate, machining current density, aspect ratio, and surface roughness. The results show that the anodic dissolution dominates material removal in the AECJM of SS316 at present conditions. The material removal rate nonlinearly correlates with machining current density between approximate 3 to 10 A/cm2 due to a nonlinear relationship of current efficiency and current density. It is also shown that the anodic dissolution can be influenced positively or negatively by abrasives impingement due to the synergy of erosion and corrosion. Relatively higher abrasive dose and jet velocity result in a reduction of anodic dissolution and however an increase of abrasive erosion. The experiments of fabricating complex patterns demonstrate that AECJM has a high potential to machine microchannels at SS316 efficiently and economically.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off