Machining characteristics of a hybrid process of EDM in gas combined with ultrasonic vibration

Machining characteristics of a hybrid process of EDM in gas combined with ultrasonic vibration This study integrated the removal mechanisms of electrical discharge machining (EDM) in gas and ultrasonic vibration to explore the benefits of the developed hybrid process in improving the machining characteristics. The developed hybrid process was adopted to determine the machining performances for SKD 61 steel through the experimental investigation. It is well known that using kerosene as a dielectric fluid in EDM would evoke the undesirable problems like fire hazard, air pollution, and environmental damage. In this study, the air, oxygen, and argon gas media were employed in the experiments to investigate the effects on material removal efficiency, surface integrity, and thickness of recast layer. The experimental results show that the hybrid process obtained higher material removal rate (MRR), lower electrode wear rate (EWR), and finer surface roughness (SR). In addition, the oxygen medium could facilitate the reaction within the machining gap to increase the exploding and melting effects. Thus, the MRR obtained by oxygen has the highest values. The argon was an inert gas that could prevent the oxidation during the process, and the lower EWR could be obtained using argon as a medium in the EDM process. The ultrasonic vibration incorporated in the process could effectively reduce the surface defects that were generated on the machined surface. Generally, the different gas media supplied into the machining area could create various mechanisms. The ultrasonic vibration incorporated into the process could also promote the machining performances of the developed hybrid process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Machining characteristics of a hybrid process of EDM in gas combined with ultrasonic vibration

Loading next page...
 
/lp/springer_journal/machining-characteristics-of-a-hybrid-process-of-edm-in-gas-combined-fFThzeo4g0
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0369-z
Publisher site
See Article on Publisher Site

Abstract

This study integrated the removal mechanisms of electrical discharge machining (EDM) in gas and ultrasonic vibration to explore the benefits of the developed hybrid process in improving the machining characteristics. The developed hybrid process was adopted to determine the machining performances for SKD 61 steel through the experimental investigation. It is well known that using kerosene as a dielectric fluid in EDM would evoke the undesirable problems like fire hazard, air pollution, and environmental damage. In this study, the air, oxygen, and argon gas media were employed in the experiments to investigate the effects on material removal efficiency, surface integrity, and thickness of recast layer. The experimental results show that the hybrid process obtained higher material removal rate (MRR), lower electrode wear rate (EWR), and finer surface roughness (SR). In addition, the oxygen medium could facilitate the reaction within the machining gap to increase the exploding and melting effects. Thus, the MRR obtained by oxygen has the highest values. The argon was an inert gas that could prevent the oxidation during the process, and the lower EWR could be obtained using argon as a medium in the EDM process. The ultrasonic vibration incorporated in the process could effectively reduce the surface defects that were generated on the machined surface. Generally, the different gas media supplied into the machining area could create various mechanisms. The ultrasonic vibration incorporated into the process could also promote the machining performances of the developed hybrid process.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Apr 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off