Machine vision for counting fruit on mango tree canopies

Machine vision for counting fruit on mango tree canopies Machine vision technologies hold the promise of enabling rapid and accurate fruit crop yield predictions in the field. The key to fulfilling this promise is accurate segmentation and detection of fruit in images of tree canopies. This paper proposes two new methods for automated counting of fruit in images of mango tree canopies, one using texture-based dense segmentation and one using shape-based fruit detection, and compares the use of these methods relative to existing techniques:—(i) a method based on K-nearest neighbour pixel classification and contour segmentation, and (ii) a method based on super-pixel over-segmentation and classification using support vector machines. The robustness of each algorithm was tested on multiple sets of images of mango trees acquired over a period of 3 years. These image sets were acquired under varying conditions (light and exposure), distance to the tree, average number of fruit on the tree, orchard and season. For images collected under the same conditions as the calibration images, estimated fruit numbers were within 16 % of actual fruit numbers, and the F1 measure of detection performance was above 0.68 for these methods. Results were poorer when models were used for estimating fruit numbers in trees of different canopy shape and when different imaging conditions were used. For fruit-background segmentation, K-nearest neighbour pixel classification based on colour and smoothness or pixel classification based on super-pixel over-segmentation, clustering of dense scale invariant feature transform features into visual words and bag-of-visual-word super-pixel classification using support vector machines was more effective than simple contrast and colour based segmentation. Pixel classification was best followed by fruit detection using an elliptical shape model or blob detection using colour filtering and morphological image processing techniques. Method results were also compared using precision–recall plots. Imaging at night under artificial illumination with careful attention to maintaining constant illumination conditions is highly recommended. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Machine vision for counting fruit on mango tree canopies

Loading next page...
 
/lp/springer_journal/machine-vision-for-counting-fruit-on-mango-tree-canopies-yxl0LQ4i3F
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-016-9458-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial