Luminescence detection of SNARE–SNARE interaction in Arabidopsis protoplasts

Luminescence detection of SNARE–SNARE interaction in Arabidopsis protoplasts Membrane associated proteins SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors) provide the minimal fusion machinery necessary for cellular vesicles to fuse to target organelle membranes in eukaryotic cells. Despite the conserved nature of the fusion machinery in all eukaryotes, it still remains challenging to identify functional SNARE pairs in higher plants. We developed a method based on a split-luciferase complementation assay for detecting changes in SNARE–SNARE interaction by luminescence within Arabidopsis protoplasts that express recombinant proteins at physiological levels in 96-well plates. The reliability of the assay was confirmed by three experiments. First, reduction of the SNARE–SNARE interaction caused by a single amino acid substitution adjacent to the SNARE motif in endosome-localized AtVAM3/SYP22 (syntaxin of plant 22) was detected by a reduction of luminescence. Second, reduction of the interaction between plasma-membrane localized SYP121 and VAMP722 in response to sodium azide was detected in real-time. Third, the results of 21 SNARE pairs investigated by this method largely agreed with the results from previously reported co-immunoprecipitation assays. Using the method, we newly identified the interaction between SYP121 and VAMP722 was significantly increased when the protoplasts were incubated in the light. Microscopic observation of transgenic Arabidopsis expressing GFP–SYP121 (green fluorescent protein tagged SYP121) from its own promoter suggested that the plasma-membrane localization of GFP–SYP121 is maintained by light. These suggested that the vesicle trafficking pathway mediated by SYP121 might be regulated by light in Arabidopsis. In general, this article demonstrated the method that can generate new biological insight of the SNARE protein interactions in plant cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Luminescence detection of SNARE–SNARE interaction in Arabidopsis protoplasts

Loading next page...
 
/lp/springer_journal/luminescence-detection-of-snare-snare-interaction-in-arabidopsis-KDh5o4tac4
Publisher
Springer Netherlands
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9581-z
Publisher site
See Article on Publisher Site

Abstract

Membrane associated proteins SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors) provide the minimal fusion machinery necessary for cellular vesicles to fuse to target organelle membranes in eukaryotic cells. Despite the conserved nature of the fusion machinery in all eukaryotes, it still remains challenging to identify functional SNARE pairs in higher plants. We developed a method based on a split-luciferase complementation assay for detecting changes in SNARE–SNARE interaction by luminescence within Arabidopsis protoplasts that express recombinant proteins at physiological levels in 96-well plates. The reliability of the assay was confirmed by three experiments. First, reduction of the SNARE–SNARE interaction caused by a single amino acid substitution adjacent to the SNARE motif in endosome-localized AtVAM3/SYP22 (syntaxin of plant 22) was detected by a reduction of luminescence. Second, reduction of the interaction between plasma-membrane localized SYP121 and VAMP722 in response to sodium azide was detected in real-time. Third, the results of 21 SNARE pairs investigated by this method largely agreed with the results from previously reported co-immunoprecipitation assays. Using the method, we newly identified the interaction between SYP121 and VAMP722 was significantly increased when the protoplasts were incubated in the light. Microscopic observation of transgenic Arabidopsis expressing GFP–SYP121 (green fluorescent protein tagged SYP121) from its own promoter suggested that the plasma-membrane localization of GFP–SYP121 is maintained by light. These suggested that the vesicle trafficking pathway mediated by SYP121 might be regulated by light in Arabidopsis. In general, this article demonstrated the method that can generate new biological insight of the SNARE protein interactions in plant cells.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 12, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off