Access the full text.
Sign up today, get DeepDyve free for 14 days.
Low thermal conductivity in yttrium aluminum garnet (YAG)-based thermal barrier coatings (TBCs) made by solution precursor plasma spray (SPPS) can be achieved by creating planar arrays of porosity called inter-pass boundaries (IPBs) as shown in Part I. In the current work, the mechanism of IPBs formation is studied through analysis of precursor entrainment and collection of single/raster step deposition patterns. It is concluded that the IPBs are formed by trapping precursor that under/over penetrates the plasma jet. CMAS interaction tests on SPPS YAG TBCs with heavy IPBs show an improvement of 123X and 15X over APS YSZ and SPPS YAG-light IPBs TBCs, respectively. It is demonstrated that the exceptional coating performance is because of the engineered heavy IPBs which branch out from the vertical cracks and run parallel to the surface. The CMAS melt gets drawn in the IPBs due to the capillary forces, leading to a shallow infiltration depth. The IPBs have a porosity of 70%, thus act as reservoirs for CMAS. Based on the favorable results, an alternate CMAS mitigation strategy is proposed that solely relies on microstructural features instead of the conventional approach where a vigorous reaction between CMAS-TBCs is desirable to form secondary phases.
Journal of Thermal Spray Technology – Springer Journals
Published: Jun 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.