Low-temperature challenges to gilthead sea bream culture: review of cold-induced alterations and ‘Winter Syndrome’

Low-temperature challenges to gilthead sea bream culture: review of cold-induced alterations and... Although gilthead sea bream have been cultured successfully for the last two decades they are particularly sensitive to low temperature. Especially in the northern Mediterranean area, cold affects fish health and decreases fish-farm production, and may even cause mortality through what is known as ‘Winter Disease’ or ‘Winter Syndrome’. This paper reviews the diagnosis and physiological effects of this disease, focusing on recent studies of cold-induced alterations in gilthead sea bream physiology. ‘Winter Syndrome’ is characterised by multi-organ dysfunction entailing hyposensitivity, erratic swimming, pale and friable livers, necrotic muscles, atrophy of the exocrine pancreas, and distended digestive tract. Its complex aetiology involves several factors such as thermal stress, metabolic depression, immune suppression, and occasional opportunistic pathogens. Low temperatures may be the initial cause of all these factors, except pathogen action. Indoor studies have demonstrated that a drop in temperature causes cold-induced fasting, thermal stress and metabolic depression. These immediate effects are related to an ionic imbalance caused by malfunctions of the gills and digestive system. They are also related to a fatty liver, which appeared steatotic and affected hepatic metabolism and blood composition. The result is a lower immune capacity and fish that are more susceptible to infection. There is no significant thermal compensation under cold conditions and in this situation any additional stress factors can cause fish to suffer metabolic collapse. This study reviews the physiological and zootechnical origins of the disease and, where possible, recommends ways of improving culture conditions during pre-cold, cold and recovery periods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Low-temperature challenges to gilthead sea bream culture: review of cold-induced alterations and ‘Winter Syndrome’

Loading next page...
 
/lp/springer_journal/low-temperature-challenges-to-gilthead-sea-bream-culture-review-of-Mps7p70syE
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Zoology ; Freshwater & Marine Ecology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1007/s11160-010-9159-5
Publisher site
See Article on Publisher Site

Abstract

Although gilthead sea bream have been cultured successfully for the last two decades they are particularly sensitive to low temperature. Especially in the northern Mediterranean area, cold affects fish health and decreases fish-farm production, and may even cause mortality through what is known as ‘Winter Disease’ or ‘Winter Syndrome’. This paper reviews the diagnosis and physiological effects of this disease, focusing on recent studies of cold-induced alterations in gilthead sea bream physiology. ‘Winter Syndrome’ is characterised by multi-organ dysfunction entailing hyposensitivity, erratic swimming, pale and friable livers, necrotic muscles, atrophy of the exocrine pancreas, and distended digestive tract. Its complex aetiology involves several factors such as thermal stress, metabolic depression, immune suppression, and occasional opportunistic pathogens. Low temperatures may be the initial cause of all these factors, except pathogen action. Indoor studies have demonstrated that a drop in temperature causes cold-induced fasting, thermal stress and metabolic depression. These immediate effects are related to an ionic imbalance caused by malfunctions of the gills and digestive system. They are also related to a fatty liver, which appeared steatotic and affected hepatic metabolism and blood composition. The result is a lower immune capacity and fish that are more susceptible to infection. There is no significant thermal compensation under cold conditions and in this situation any additional stress factors can cause fish to suffer metabolic collapse. This study reviews the physiological and zootechnical origins of the disease and, where possible, recommends ways of improving culture conditions during pre-cold, cold and recovery periods.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Feb 11, 2010

References

  • Compensatory growth in fishes: a response to growth depression
    Ali, M; Nicieza, A; Wootton, RJ
  • The effect of demand feeding on swimming speed and feeding responses in Atlantic salmon Salmo salar L., gilthead sea bream Sparus aurata L. and European sea bass Dicentrarchus labrax L. in sea cages
    Andrew, JE; Noble, C; Kadri, S; Jewell, H; Huntingford, FA
  • Fish welfare: current issues in aquaculture
    Ashley, PJ

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off