Low Reynolds number effects in open-channel turbulent boundary layers

Low Reynolds number effects in open-channel turbulent boundary layers The present study reports measurements of a turbulent boundary layer in an open-channel flow using fiber-optic laser Doppler anemometry. The Reynolds numbers based on momentum thickness and depth of flow are in the range 750≤Re θ ≤2,400 and 15,300≤Re h ≤54,200, respectively. It is shown that an accurate estimate of the wall shear stress can be made by fitting a fifth-order polynomial to the near-wall data. The effect of Reynolds number on the mean turbulence intensity and triple correlation is examined using both conventional scaling laws and the recent scaling laws proposed by George and Castillo. The present results show that different scaling laws lead to different conclusions on low Reynolds number effects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Low Reynolds number effects in open-channel turbulent boundary layers

Loading next page...
 
/lp/springer_journal/low-reynolds-number-effects-in-open-channel-turbulent-boundary-layers-MfCL5CadZV
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-003-0599-8
Publisher site
See Article on Publisher Site

Abstract

The present study reports measurements of a turbulent boundary layer in an open-channel flow using fiber-optic laser Doppler anemometry. The Reynolds numbers based on momentum thickness and depth of flow are in the range 750≤Re θ ≤2,400 and 15,300≤Re h ≤54,200, respectively. It is shown that an accurate estimate of the wall shear stress can be made by fitting a fifth-order polynomial to the near-wall data. The effect of Reynolds number on the mean turbulence intensity and triple correlation is examined using both conventional scaling laws and the recent scaling laws proposed by George and Castillo. The present results show that different scaling laws lead to different conclusions on low Reynolds number effects.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 25, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off