Low-pressure solid-state bonding technology using fine-grained silver foils for high-temperature electronics

Low-pressure solid-state bonding technology using fine-grained silver foils for high-temperature... A solid-state bonding technique using fine-grained silver (Ag) foils is presented. The Ag foils are manufactured using many runs of cold rolling and subsequent annealing processes to achieve the favorable microstructure. X-ray diffraction and pole figure measurement are performed to examine the crystal structure and grain orientations. Si chips are bonded to bare Cu substrates using the Ag foil as the bonding medium at 300 °C in 0.1 torr vacuum assisted by 6.9 MPa static pressure, which is much lower than that used in conventional thermal compression bonding. Cross sections prepared by focus ion beam show clear bonding interfaces with only a few voids smaller than 100 nm. The bonded structures do not crack after cooling down to room temperature, indicating that the ductile Ag layer is able to manage the strain induced by the large coefficient of thermal expansion mismatch between Si and Cu. The average shear strength of as-bonded samples is 29 MPa. High-temperature storage tests are conducted, and slight increase in strength can be observed after 300 °C aging. Fracture analyses show that the breakage occurs within the Ag foil rather than on the bonding interface. Transmission electron microscopy and energy-dispersive spectroscopy (TEM/EDX) are conducted for Ag/Cu interface after 200-h aging, and the result shows that slight diffusion proceeds during the aging. Since Ag has the highest electrical and thermal conductivities among metals, therefore the bonded structures reported in this paper probably represent the best possible design for high-temperature and high-power electronic packaging applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Low-pressure solid-state bonding technology using fine-grained silver foils for high-temperature electronics

Loading next page...
 
/lp/springer_journal/low-pressure-solid-state-bonding-technology-using-fine-grained-silver-tSBRRyoyH1
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-017-1689-y
Publisher site
See Article on Publisher Site

Abstract

A solid-state bonding technique using fine-grained silver (Ag) foils is presented. The Ag foils are manufactured using many runs of cold rolling and subsequent annealing processes to achieve the favorable microstructure. X-ray diffraction and pole figure measurement are performed to examine the crystal structure and grain orientations. Si chips are bonded to bare Cu substrates using the Ag foil as the bonding medium at 300 °C in 0.1 torr vacuum assisted by 6.9 MPa static pressure, which is much lower than that used in conventional thermal compression bonding. Cross sections prepared by focus ion beam show clear bonding interfaces with only a few voids smaller than 100 nm. The bonded structures do not crack after cooling down to room temperature, indicating that the ductile Ag layer is able to manage the strain induced by the large coefficient of thermal expansion mismatch between Si and Cu. The average shear strength of as-bonded samples is 29 MPa. High-temperature storage tests are conducted, and slight increase in strength can be observed after 300 °C aging. Fracture analyses show that the breakage occurs within the Ag foil rather than on the bonding interface. Transmission electron microscopy and energy-dispersive spectroscopy (TEM/EDX) are conducted for Ag/Cu interface after 200-h aging, and the result shows that slight diffusion proceeds during the aging. Since Ag has the highest electrical and thermal conductivities among metals, therefore the bonded structures reported in this paper probably represent the best possible design for high-temperature and high-power electronic packaging applications.

Journal

Journal of Materials ScienceSpringer Journals

Published: Oct 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off